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Abstract

Gene expression data provide information on the lo-
cation where certain genes are active; in order for this
to be useful, such a location must be registered to an
anatomical atlas. Because gene expression maps are
considerably different from each other – they display the
expression of different genes – and from the anatomical
atlas, this problem is currently addressed either man-
ually by trained experts, or by neglecting all image in-
formation and only using the pre-segmented boundaries.
In this manuscript we concentrate on data discrepancy
measures that take into account image information when
this is present in both the target and template images.
We exploit such “bi-lateral” structures to drive the cor-
respondence process in regions where the intensity in-
formation is inconsistent, analogously to a “motion in-
painting” task. Although no ground truth can be estab-
lished, and prior information clearly plays a key role,
we show that our model achieves desirable results on
subjective tests validated by expert subjects.

1. Introduction
Establishing correspondence between different im-

ages is key for us to infer properties of the underlying
scene. The basic assumption is that there is something
common between the images, modulo domain deforma-
tions (e.g. induced by viewpoint changes or by scene de-
formations) and range deformations (e.g. contrast trans-
formations induced by changes in illumination, or by
changes of imaging modality). Such commonality may
be abstract, rather than physical, for instance when the
images portray objects in the same category, say “hip-
pocampus,” even though each image portrays a different
physical object. A crucial component of any approach to
registration is the mechanism used to compare two (de-
formed) images: While range (intensity) similarity is a

natural choice, for instance measured in the sense of L2

[30] or Total Variation [26], extreme contrast changes
have been successfully tackled using Mutual Informa-
tion [22].

The most recent developments in medical imag-
ing, however, are challenging these premises altogether:
Gene expression data are generated with different stains,
highlighting different genes, with the express goal of
making each resulting image as different as possible
from the others, in order to maximize their information
content. Nevertheless, the practitioner requires register-
ing such images to anatomical atlases, in order to ascribe
the activity of a gene to a particular anatomical struc-
ture (Fig. 1). The same goes for registering functional
imaging (e.g. F-MRI) to anatomical atlases, a task that is
by and large performed manually by trained physicians.
While this is doable for a handful of subjects, system-
atic statistical studies of gene expression data in large
populations call for some degree of automation.

But what does it mean to establish correspondence,
when there is no common underlying structure, and
when the data are designed to be as different (“indepen-
dent”) from each other as possible? Clearly expert prior
knowledge of anatomy and biological functionality is in-
dispensable, and several research groups are actively en-
gaged in modeling, learning and enforcing shape priors
in segmentation and registration [16, 25]. Nevertheless,
any registration algorithm must also take into account
the available data, and this problem has been largely
overlooked in the literature, where mostly standard data
terms are used [15, 24], or where only the boundary in-
formation is taken into consideration and the rest of the
deformation field is determined by generic regulariza-
tion [8, 20, 27]. Therefore, in this manuscript we focus
our attention on devising suitable data terms for register-
ing multi-modal images. Our goal is to design a scheme
to take visible geometric structures (one could call them
“landmark regions”) into account when they are present



Figure 1. Gene expression data (top-right) and a manually se-
lected anatomical template (top-left). Detailed correspondence
is currently performed largely by hand by trained physicians.
Synthetic phantoms (bottom): Certain regions are visible in
both the target and the template, although deformed, whereas
other regions are visible only in one of the two. The goal is to
exploit “bilateral” regions to drive the correspondence process
for “unilateral” regions.

in both images, and use their registration as boundary
condition to “guide” the structures that are present in one
image (e.g. gene expression), but not the other (e.g. the
atlas). The problem is best illustrated with a phantom,
or “cartoon” (Fig. 1). A template image (left) exhibits
some visible structures (e.g. grey region on the top left),
and one is interested in determining where such struc-
ture is located on an atlas (right). Unfortunately, such
a structure is absent in the atlas! Therefore, we need
to “transfer” correspondence information from common
(or “bilateral”) structures in order to infer the motion
and deformation of “unilateral” ones. One could think
of this problem as “motion inpainting” [3], although one
where domain knowledge plays a considerable role.

Any approach that relies on raw intensity information
fails this task because, by design, one assumes that im-
ages are equivalent up to diffeomorphic domain trans-
formations [2, 16]. In Fig. 2 we show the effects of
a common intensity-based algorithm on registering the
phantoms of Fig. 1: Bilateral structures are mapped cor-
rectly, but unilateral ones shrink to a point, inducing a
singularity (sink) in the warping that is not physically
plausible in this context (although it would be appropri-
ate in a “growth” model [10]). This problem is mostly

Figure 2. Correspondence for the phantoms in Fig. 1 using
only intensity information (top), using only geometric infor-
mation (middle), and using the combined model we propose
(bottom). In each case we show the deformation field (left)
and the mapped template (right). In the case of intensity in-
formation alone, unilateral regions disappear (top). In the case
of geometric information alone, bilateral regions are not de-
formed correctly (middle). In the combined model, bilateral
regions are deformed according to the data, whereas unilateral
regions are mapped according to geometric information (bot-
tom).

addressed in current literature by neglecting intensity in-
formation altogether, using instead the outer boundary
of the slice. In this case, the deformation is smooth, but
bilateral structures are not mapped correctly (Fig. 2).
Our goal is to bridge this gap: Where bilateral structures
are present, we want to use them to guide our warping.
Unilateral structures, on the other hand, should be pre-
served and mapped onto the atlas. What we need is a
spatially-varying criterion that uses intensity informa-
tion only where available. We will formulate this prob-
lem as a probabilistic inference, where the likelihood of
the data is weighted at each point by the probability of



there being a bilateral structure.

2. Formalization of the problem

Let I1, I2 : D ⊂ R2 → R+ be two images x 7→
Ij(x), j = 1, 2, and w : D → D a diffeomorphism of
the domain of one onto the other. Within the domain of
each image lies a region of interest Ωj ⊂ D, whereas the
“background” D−Ωj is assumed segmented (or equiva-
lently Ij can be assumed to have zero value outside Ωj .)
We represent regions Ω ⊂ D using the signed distance
function φ(x|Ω) .= ±miny∈∂Ω(|x − y|), x ∈ D with
the positive sign for x ∈ Ω and negative otherwise. The
function φ is at least Lifschitz continuous [19].

Within each domain Ωj , assume that there are regions
Bj ⊂ Ωj , j = 1, 2 (not necessarily simply connected)
that have a distinct photometric signature so that they
can be detected by a low-level image processing algo-
rithm. We will make this precise, and indeed we will
relax this assumption later; for now, assume that the
regions Bj , j = 1, 2 are known. We call these bilat-
eral regions, in the sense that they are detected in both
images (Fig. 1). On the other hand, there are regions
U ⊂ Ωj that are detected in one image but not the other,
which we call unilateral. For the sake of illustration we
will assume that U ⊂ Ω1. This scenario is displayed in
its most elementary form in Fig. 1.

Our model is based on the premise that, locally
around bilateral regions, the warping w is determined
by intensity information, whereas away from bilateral
regions, where intensity is constant or inconsistent be-
tween the two images (e.g. around unilateral regions),
the diffeomorphism is determined by the geometry of
the regions Ω1, Ω2, as well as by generic regularizers.
These assumptions can be translated into a simple gen-
erative model





I1(w(x)) = I2(x), x ∈ Ω2 ∩ Bσ(B2)
B1 = w(B2)
φ(w(x)|Ω1) = φ(x|Ω2), x ∈ D

(1)

where Bσ(C) is a region including C by a margin σ > 0
(e.g. the union of C with a covering of balls of radius
σ around ∂C). We will first review criteria to infer the
diffeomorphism w based on geometric information only
in Sect. 2.2 (i.e. neglecting the value of Ij(x), x ∈ Ωj);
then based on photometric information only (i.e. on the
intensity value of the images) in Sect. 2.3, and finally
discuss our model in Sect. 2.4, for which we will provide
a probabilistic interpretation in Sect. 2.5. Before doing
so, however, we discuss the issue of validation.

2.1. On validation

Naturally, because there is no data to support cor-
respondence of unilateral structures, the result will be
a direct consequence of our assumptions (or “model”,
“prior” or “regularizers”, depending on the parlance
of the scientific domain of preference). In this sense,
the problem is both scientifically ill-defined (i.e. non-
falsifiable), and mathematically ill-posed (there are in-
finitely many solutions that are non-continuously de-
pendent on the initial conditions). As a consequence,
“ground truth” cannot be established – similar to In-
painting [3] – and the problem is tautologically defined
by its solution. Ultimately, the quality of our result can
only be judged subjectively on experiments performed
by highly trained anatomists that can establish such a
correspondence based not on the available data alone
(as we do), but based on high-level knowledge that is
not available to the untrained eye, reflecting the clinical
value of a proposed scheme.

2.2. Geometry-driven component cost

The simplest model to perform registration based
only on the shape of the regions Ωj is to minimize a dis-
crepancy term between φ1(x) .= φ(x|Ω1) and φ2(x) .=
φ(x|Ω2), for instance the L2 norm. Because the dif-
feomorphism is infinite-dimensional, the problem is ill-
posed, hence we need to impose some regularization, for
instance the L2 norm of its gradient:

ŵ
.= arg min

w
Φgeom + βΦreg

.=

.=
∫

D

1
2
|φ1(w(x))− φ2(x)|2 +

β

2
|∇w(x)|2 dx (2)

where β > 0 is a tuning parameter and |v|2 .= vT v de-
notes the squared two-norm of a vector. Of course more
elaborate models and techniques can be employed, and
the reader is referred to the literature, for instance [1].
However, this simple one suffices for us to introduce our
model to combine geometric with intensity information.
We review the sole-intensity model next.

2.3. Intensity-driven component cost

Correspondence based on intensity information is a
field almost as broad as Computer Vision itself, so obvi-
ously no fair review of the literature can be provided in
this venue. We will choose one of the simplest models
that can serve our purpose, namely the L2 matching cri-
terion that corresponds to restricting the classical Horn



and Shunk flow [11] to the regions of interest:

ŵ = arg min
w

Φint + βΦreg
.=

.=
∫

Ω2∩Bσ(B2)

1
2
|I1(w(x))−I2(x)|2+β

2
|∇w(x)|2 dx.

(3)

This model is rather restrictive, in that it does not al-
low intensity variations among the two images and as-
sumes that they are simply diffeomorphically equiva-
lent [10, 16]. It can be relaxed by allowing simple
(global) changes in contrast and scaling, either via pre-
processing, or by augmenting the model with additional
parameters that can be inferred along with the warping
ŵ. More generally, the cost function can be modified
by allowing the intensities to be different, so long as
the mutual information between the two images is max-
imized [15, 24, 29]. Of course other variations using
other Lp norms [12, 28], total variation [26], Kullback-
Liebler divergence [6], Bhattacharya distances between
region histograms [7], or a myriad of different regular-
izers can also be employed. Also, the functional above
can be made symmetric with respect to which image (in
our case I1) is mapped to which, by allowing two diffeo-
morphisms to warp both images to a common template
[17].

2.4. Combined functional and bilateral region
detection

As we have anticipated, our approach consists of us-
ing intensity information (or other intensity statistics, for
instance gradient histograms) where salient regions are
detected in both images. Following the model above,
this simply translates into a functional of the form

Φ(w) =
∫

D

1
2
|I1(w(x))− I2(x)|2χΩ2∩Bσ(B2)(x)+

+
α

2
|φ1(w(x))− φ2(x)|2χΩc

2∪Bc
σ(B2)(x)+

+
β

2
|∇w(x)|2 dx (4)

where χS(x) is the characteristic function of a set S,
α > 0 is a tuning multiplier, and the superscript c de-
notes the complement in D.

Now, the use of the characteristic functions above as-
sumes that the bilateral regions Bj have been detected,
and this is usually accomplished by a low-level vision
algorithm. Like any other decision problem, this will in-
volve selecting a threshold on some statistic of the image
in the neighborhood of Bj , involving the probability that

x belongs to it. For instance, one can compute likelihood
ratios based on the gradient of the image, or better yet
look for extrema of operators in scale-space [14]. Rather
than assuming that this decision has been made for us,
we will simply weight the geometric and intensity terms
at a point x by the probability that such a point belongs
to a “structure,” using the same criterion that a low-level
structure criterion would use. For the sake of illustra-
tion, we will use the normalized gradient of Gaussian
scale-space of the image, following [14], that is equiva-
lent to assuming P (x ∈ B2) = |∇normI2(x)| ∈ [0, 1].
Naturally, for B2 to be a bilateral region, it will have
to have a correspondence in image I1, so it is not suffi-
cient to evaluate the gradient at I2, we must also evalu-
ate it at I1, warped via w, so that the criterion becomes
|∇normI1(w(x))| · |∇normI2(x)|. We will write this in
terms of probabilities in the next subsection, and discuss
how to extend it to more general discrepancy functions
such as mutual information in Sect. 3; for now we just
notice that the cost functional above becomes

Φ(w) =
∫

D

1
2
|I1(w(x))−I2(x)|2|∇normI1(w(x))|·

· |∇normI2(x)|+ α

2
|φ1(w(x))− φ2(x)|2·

·(1−|∇normI1(w(x))|·|∇normI2(x)|)+β

2
|∇w(x)|2 dx.

(5)

This functional only considers intensity where the nor-
malized scale-space gradient is large both in the target
image and in the warped template. This only happens on
and around bilateral regions, to an extent that depends
on the scale of such regions (see [14] for details on au-
tomatic scale selection). Where such conditions are not
satisfied, the geometric term and the generic regularizer
drive the energy. An added benefit is that, because we
have assumed that the images have been masked so that
the background is zero, we can simply perform the inte-
gral on D without restricting portions of it to Ω2.

To minimize Φ(w), variational calculus yields the
first variation (for simplicity we only consider U ⊂ Ω1)

δΦ
δw

= (I1(w(x))− I2(x))∇I1(w(x))·
· |∇normI2(x)|+ α(φ1(w(x))− φ2(x))∇φ1(w(x))·

· (1− |∇normI2(x)|)− β∇2w(x) (6)

with ∇2 the Laplacian operator. By gradient descent
with backtracking line search [23] we obtain the asso-
ciated Euler-Lagrange equations, parameterizing the de-



scent direction by an artificial time t ≥ 0:

∂w

∂t
= −δΦ

δw
. (7)

The temporal and spatial gradients are approximated by
finite difference methods.

Again, this model only uses the simplest intensity
term, and the simplest geometric term. Our emphasis
is in how to combine the two. One can conceive ways in
which this approach can be extended to more complex
functionals, an issue we discuss in Sect. 3.

2.5. Probabilistic interpretation

In formal terms, our goal can be stated as seeking
the maximum a-posteriori probability of a diffemorphic
warping, that is

ŵ
.= arg inf

w
log p(w|I1, I2) =

= arg inf
w

log p(I1, I2|w)p(w). (8)

The second term, log p(w), can be easily recog-
nized, in the model (5), as the generic regularizer∫

D
1
2 |∇w(x)|2dx. So we concentrate on the log-

likelihood term log p(I1, I2|w). This can be obtained via
p(I1, I2|w) = p(I1|I2, w)p(I2). To this end, the mod-
els proposed by [18] could be employed, in principle,
so what we need to compute is p(I1|I2, w). Now, again
in purely formal terms, we could represent the probabil-
ity of matching bilateral regions as P (B1 ↔ B2); then
what we wish to compute is

p(I1|I2, w) = p(I1|I2, w,B1 ↔ B2)P (B1 ↔ B2)+
+ p(I1|I2, w, U ↔ ∅)(1− P (B1 ↔ B2)). (9)

Now, this is just formal notation. The difficulty comes in
when we try to write explicitly the probabilities above,
because the condition B1 ↔ B2 is specific to each point
x ∈ D, so again we have to specify the spatial statistics
of the image, which would lead to an inference problem
where all possible combinations of states are possible
and time-consuming Markov-Chain Monte Carlo meth-
ods become necessary rather than simple local descent
algorithms.

So, instead of attempting to compute the above like-
lihood, we will approximate it by assuming that all pix-
els are independent, and computing an average (expec-
tation) over pixels of the probability

∏

B1↔B2

e−
1
2 |I1(w(x))−I2(x)|2 ∏

U↔∅
e−

1
2 |φ1(w(x))−φ2(x)|2

(10)
which, modulo technicalities, should converge to (4), the
“stiff version” of our functional (5).

3. Extensions

While the approach described in the previous sec-
tion can be applied directly to simple synthetic phantoms
such as those in Fig. 1, application to real multi-modal
images requires a more powerful model.

Specifically, rather than L2, we use mutual informa-
tion [21] between the deformed template I1 ◦ w and the
target I2, denoted by

ΦMI(w) =
∫

log
p(I1, I2|w)

p(I1|w)p(I2)
dP (I1, I2|w). (11)

Estimation for the joint image intensity distribution
p(I1, I2|w) is carried on the region of overlap A of both
images by using 2-D Parzen windowing with Gaussian
kernel Gσ:

p(I1(w(x)), I2(x)|w) =
1
|A|

∫

A

Gσ(I1(w(x))−

− I1(w(y)), I2(x)− I2(y)) dy. (12)

It is equivalent to convolving the joint intensity his-
togram with a discrete approximation of Gσ. The joint
histograms of I1◦w and I2 within their region of overlap
are constructed by binning the corresponding intensity
pairs (I1(w(x)), I2(x)), and the marginal histograms
are obtained by integrating over rows and columns, re-
spectively.

Substituting (12) into (11) and rearranging following
[4, 9], yields the first variation of ΦMI :

δΦMI

δw
= − 1

|A| ·

·
[
Gσ ∗ ∂LI1,I2

w

∂I1

]
(I1(w(x)), I2(x))∇I1(w(x)) (13)

with ∗ the convolution operator, and LI1,I2
w given by

LI1,I2
w = 1 + log

p(I1, I2|w)
p(I1|w)p(I2)

. (14)

In place of an L2 regularizer, we use a fluid model
[5] where the deformation velocity v(x, t) is governed
by the simplified Navier-Stokes equations

µ∇2v + (µ + λ)∇(∇ · v) + f = 0 (15)

with µ and λ viscosity constants. Here f is the force
field which drives the warping w in the appropriate di-
rection. It is derived from image information, usually set



to the first variation. In the combined model, we have

f(x,w(x)) = −δΦMI

δw
− δΦgeom

δw
=

=
1
|A|

[
Gσ ∗ ∂LI1,I2

w

∂I1

]
(I1(w(x)), I2(x))∇I1(w(x))·

· P (x ∈ B2)− α ∗ (φ1(w(x))− φ2(x))∇φ1(w(x))·
· (1− P (x ∈ B2)). (16)

The deformation u(x) = x−w(x) is successively accu-
mulated through

∂u

∂t
= v − (v · ∇)u. (17)

This extension is rather straightforward, the only
significant change being the expression of the weight
P (x ∈ B2). Since mutual information between two im-
ages is related to pixel locations through intensity distri-
butions, we need to not only consider the intensity gra-
dients, but also the spatial gradients of intensity distribu-
tions. A direct extension of the argument for (5) leads to
multiplying the target intensity gradients by the spatial
gradient of a Parzen window-based joint density estima-
tor from the sample histograms of the two images, i.e.,

P (x ∈ B2) = |∇normI2(x)|·

·
∣∣∣∣
[
Gσ ∗ ∂LI1,I2

w

∂I2

]

norm

(I1(w(x)), I2(x))
∣∣∣∣ . (18)

4. Experiments
In this section we report a subset of the experiments

we have conducted to validate the model proposed. As
discussed in Sect. 2.1, ground-truth cannot be estab-
lished for correspondence transfer since there is no cor-
respondence for unilateral regions, so validation is per-
formed subjectively by domain experts, and ultimate
performance will hinge on how our approach is inte-
grated with shape priors and other high-level informa-
tion.

Fig. 2 shows the results of applying our approach to
the simple synthetic phantoms shown in Fig. 1. It is
patent that our approach has the desirable property of
not making the unilateral regions disappear, and at the
same time of properly deforming bilateral regions.

In Fig. 3 we illustrate our approach on real data. In
order to do so, we must use a more elaborate discrep-
ancy measure, as discussed in Sect. 3. In the top row we
show the results obtained using only an intensity term
where discrepancy is measured using mutual informa-
tion. As it can be seen, the deformation grid is rather

Figure 3. Comparison with Mutual Information: (top) warping
and registration using mutual information, and (bottom) using
our approach. Notice that the dark region in the template is
mapped in a highly irregular fashion to the target, and the its
geometric structure is not preserved. Our combined model,
displayed in the bottom part of the image, shows a more plau-
sible deformation field, with unilateral regions being smoothly
mapped into the anatomical template, and bilateral regions cor-
rectly deformed.

irregular, and in particular the dark region of the left be-
comes “turbulent” in a way that is not compatible with
high-level knowledge of anatomy. Our approach (bot-
tom), on the other hand, shows that unilateral regions are
mapped smoothly while bilateral features are deformed
consistently. Additional examples on different test data
are reported in Fig. 4.

In Fig. 5 we show some representative experiments
where our approach fails to yield a meaningful corre-
spondence. As it can be seen, the template is deformed
locally, so the fold visible in the target is not correctly
mapped. This kind of behavior is to be expected since
our algorithm is based on a data discrepancy term alone,
which encodes bottom-up, low-level information and is
oblivious to any knowledge of the anatomy or physics of
the underlying structures. This can be obviated by taking
high-level prior information into account, an issue that is
beyond our scope in this paper, where considerable ef-
forts are undergoing in the medical imaging community.



Figure 4. Some more representative examples where our com-
bined model yields subjectively successful correspondence of
unilateral regions. The template (top-left), and target (top-
right) are mapped one onto the other by a deformation field
(bottom-left) that yields the deformed template (bottom right).

4.1. Validation and discussion

As we have discussed in Sect. 2.1, no ground truth
can be available for the problem we address. That is,
unless high-level prior knowledge is brought to bear that
our algorithm does not exploit. Ultimately, our algo-
rithm will have to be complemented with shape priors,
similarly to what done by [13]. For now, however, we
limit ourselves to subjective evaluation of our results by
expert anatomists. At this stage, cross-validation and
other statistical tests cannot be performed because there

Figure 5. Example of limitations of our model. Fine-scale ge-
ometric features (e.g. the small gap on the top right portion
of the atlas) are not mapped correctly because our model only
uses low-level information and is not cognizant of anatomical
structure and constraints. It is clear that prior knowledge of
the geometry of the underlying anatomy has to be enforced to
achieve the reliability and precision of human experts.

is no secondary task (e.g. classification) for which we
could have ground truth. It is possible that these will
become available in the future (e.g. post-mortem stud-
ies of each individual subject), but that would not be
practical. Our hope is that our model, integrated with
suitable shape priors, can help science by automating
multi-modal registration tasks. Our experiments show
that including an explicit model of the correspondence
hypothesis for bilateral versus unilateral regions there
are improvements over both traditional intensity-based
registration, as well as over mutual information-based
approaches.
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