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Abstract

The literature on recursive estimation of structure and motion from monocular im-
age sequences comprises a large number of different models and estimation techniques.
We propose a framework that allows us to derive and compare all models by following
the idea of dynamical system reduction.

The “natural” dynamic model, derived by the rigidity constraint and the perspective
projection, is first reduced by explicitly decoupling structure (depth) from motion.
Then implicit decoupling techniques are explored, which consist of imposing that some
function of the unknown parameters is held constant. By appropriately choosing such
a function, not only can we account for all models seen so far in the literature, but we

can also derive novel ones.

1 Introduction

Suppose that we are looking at a scene through a moving camera. The problem of “structure from
motion” deals with reconstructing both the relative motion between the scene and the camera,
and the structure of the scene. We represent the structure of the scene as the position of a
number N of point-features in 3-D space, and we assume to be able to measure their perspective
projection onto the 2-D image plane. We also assume that we are able to assess which feature
corresponds to which across different views. Alternatively, we may assume that we can measure
the optical flow, which is the image velocity of brightness patches at a number N of locations
on the image, as an approximation of the projection of the 3-D velocity of feature points (see [3]

for a review of optical flow/feature tracking techniques).



The basic constraints of rigid motion and the projection map describe in a natural way a dy-
namical model, whose state encodes the structure of the scene, and whose inputs (or parameters)
describe the motion relative to the viewer. Despite the simplicity of the constraints that “define”
the problem, the literature on recursive structure and motion estimation comprises a large number
of quite diverse methods. Which one is the “correct” one? We feel the need to understand the
relationships between such methods, and to assess the qualitative and quantitative properties of
each one by comparing them on a common ground. Such comparison is not a trivial matter, for
any estimation method involves two aspects: a model that describes the constraints involved in
the problem, and an estimation technique, for reconstructing the unknows from the model and
the data. For each model one may employ different estimation techniques.

We stress the fact that we do not wish to compare existing motion estimation methods, for
there are many different ones that are based upon non-structural variations of the same models
or that employ different estimation techniques. Rather, we wish to evaluate models that are
structurally different, develop a framework that allows us to justify them all, and to compare
their geometric substance and engineering value on a common experimental ground.

We will start from the constraints that “define” structure from motion, namely the rigidity
constraint and the perspective projection, and see how they naturally define a dynamical model
with unknown parameters. Such a model has structural limitations that do not allow us to
estimate its state and identify its parameters from the measurements. Two alternative strategies
may be chosen at this point: either we extend the dynamical model so as to include in the state
the unknown parameters, or we reduce it so as to decouple the states from the parameters. The
extended model has some shortcomings, which motivate us towards the reduced one. Simple
reduction strategies may be applied both for discrete-time models and for continuous-time ones.
However, they lead to different outcomes. It is possible to settle such an asymmetry only by
allowing an “implicit” reduction of the the dynamical model, by enforcing that some function of
its states is held constant.

This paper is concerned with modeling. We will see how all models for estimating motion
from a dynamical system fall into a special class of implicit dynamical systems with unknown

parameters on a manifold. Once a model is proposed, an optimization technique needs to be



employed for estimating structure and motion. We do so in a companion paper [35], where we
also evaluate all methods on a common experimental ground, which highlights some caveats when

reduction is performed with an output-dependent change of coordinates.

1.1 Motion and structure estimation as an optimization problem

Once the geometric constraints involved in the problem (namely the rigidity constraint and the
point-wise representation of structure) and the measurement model (for instance perspective
projection) have been formalized, one may set up an optimization problem in order to estimate
3N +6M unknown parameters (3 space coordinates for each feature-point and 6 components of
motion across M time instants), from 2N M image projections of the N points at each of the
M images.

A variety of models have been proposed involving structure, motion, and images of feature-
points, for instance the coplanarity constraint [20], the subspace constraint [18, 14, 40], the
so-called “plane plus parallax” representation [4, 27, 29] and fixation constraints [11]. These
constraints have then been exploited for estimating structure and/or motion from image se-
quences using a number of optimization schemes, either batch, or recursively. Batch optimiza-
tion techniques from two consecutive frames, based upon the coplanarity constraint, have been
presented both in closed-form [20, 42], or iterative [16, 43]. The same holds for the subspace
constraint [14]. Multi-frame batch techniques have also been presented, both in closed-form
under orthographic or affine projection [26, 41], and iteratively for the case of full perspective
projection [1, 23, 25, 37, 38]. In this paper we will be dealing with causal dynamic models for
multi-frame processing. In a companion paper [35] we will use such models for designing local
recursive observers, such as the Extended Kalman Filter (EKF) [17]. Relatively few schemes for
recursive motion estimation exist in the literature, see for instance [2, 6, 7, 9, 15, 23, 25, 32, 37].

A simple counting of the dimensions will soon convince the reader that, regardless the es-
timation technique employed, the huge dimensionality of the problem and the highly nonlinear
nature of the space of unknown parameters make the optimization so complicate that the issue

of an appropriate modeling becomes crucial.



1.2 Decoupling as a modeling strategy

When facing a high-dimensional optimization problem, it is important to unravel the geometry
of space of unknown parameters, in order to see whether there are “slices” where the param-
eters evolve independently in the cost objective. This responds to the need of decomposing a
high-dimensional optimization task into the solution of a number of smaller, simpler and better
conditioned problems.

In the case of structure and motion estimation, the work of Longuet-Higgins [20] (L-H)
pioneered this approach, by decoupling structure from the motion parameters, which he encoded
in a 3 x 3 matrix, called Essential matrix. Adiv [1] and Heeger and Jepson [14] (H-J) further
decoupled the translational velocity from the rotational velocity.

We will re-derive the constraints of H-J and L-H within a unified procedure. We will start
from the dynamical model determined by the rigidity constraint and the perspective projection,
and construct the so-called reduced-order observer [19] both for the continuous-time and the
discrete-time models. These result, respectively, in the subspace constraint and the coplanarity
constraint, now interpreted as nonlinear implicit models of a special class (so-called Exterior
Differential Systems [8]) with parameters on a manifold. Such a manifold is a 5-dimensional
space, called Essential manifold, in the discrete-time case of L-H and the 2-dimensional sphere
in the continuous-time case of H-J.

This asymmetry between continuous and discrete time, which cannot be resolved in the
context of the reduced-order observer, is what will motivate us towards alternative strategies for

reducing the model.

1.3 “Explicit” versus “implicit” decoupling

Although it is not always possible to decouple the unknown parameters in closed-form, it is
possible to do so implicitly by imposing that some function of the parameters is held constant.
We will see how this leads to a reduction of the model by constraining it onto a subspace of
the parameter space. For instance, we may impose that the image of a point, a line, or a plane
remains fixed. This procedure identifies slices of the parameter manifold where the model is

constrained to evolve. For instance, these manifolds are 4 and 3-dimensional submanifolds of



the Essential manifold, when a point or a line are fixated, and the 2-dimensional sphere (also
a submanifold of the Essential manifold), in the case in which a plane is fixated. Thus, we
may interpret the compensation of the motion of a point, a line, or a plane, as a geometric
stratification of the Essential manifold. By restricting the model to the appropriate slices, we
derive 4, 3 and 2-dimensional dynamic constraints, the latter being the discrete-time equivalent

of the H-J constraint.

1.4 Relation to previous work

The literature on 3-D visual motion estimation comprises a large variety of apparently unrelated
constraints involving rigid motion and projection of point-features. We consider equivalent all
systems whose state-spaces are identified modulo a diffeomorphism. These include changes of
coordinates (world-centered vs. viewer-centered), changes of the reference on the image plane
etc. . This paper starts with the standard rigid motion and perspective projection constraints,
which are the essential ingredients of the problem and common to all recursive schemes, for
instance [2, 7, 15, 21, 23, 36], and derives the constraints of Longuet-Higgins [16, 20, 42] and
Heeger and Jepson [14], in the context of the observer reduction.

An apparently unrelated line of work is motivated by the mechanics of the oculomotor system
in primates. A number of studies have suggested that the task of estimating motion is made
easier if some particular point on the scene is being fixated [11, 28, 39]. However, “made easier”
cannot be directly quantified unless the different constraints are cast within the same framework
and compared using the same optimization setup. We view such fixation constraints as instances
of transformations of the input images that stabilize particular output functions such as the
position of a point, a line or a plane in the image. This framework allows us to derive the point-
fixation constraint [11, 28, 39], the so-called “plane-plus-parallax” representation [4, 27, 29], as
well as intermediate constraints, for instance by fixating the motion of a point and a point on a
line. All the constraints are imposed by considering slices of the parameter manifold, leaving the
estimation technique untouched. This allows us to view all such models under the framework of

epipolar geometry, and comparing them under equivalent conditions.



2 Recursive estimation of rigid motion and structure
from point-features

In this section we are going to establish the notation and formalize the basic constraints that
“define” the problem of structure and motion estimation. Such constraints naturally result in
a dynamical model. However, we argue that such a model has limited engineering value; this

motivates us towards the reduction strategy described in the next sections 3 and 4.

2.1 The basic ingredients: rigid motion and projection

We assume that the scene is described by a number N of point-features in 3-D space, with
coordinates X' € R® Vi = ... N relative to a reference frame centered in the optical center of
the camera, which moves rigidly between successive time instants.

We call X' = [ Xt Yr 7t ]T € R? the coordinates of a generic point P’ with respect to
an orthonormal reference frame centered in the center of projection, with Z along the optical
axis and X, Y parallel to the image plane and arranged as to form a right-handed frame. As the
reference frame moves rigidly between time ¢ and ¢ + 1 (or equivalently, all points move rigidly

relative to it), the coordinates of each point evolve according to
Xi(t+1) = R{t)X'(t) + T(t) Vi=1...N. (1)

The matrix R belongs to the space of unit-determinant orthonormal 3 x 3 matrices, called SO(3),
and describes the change of orientation between the viewer's reference at time ¢ and that at time
t+1 relative to the object. T € IR? describes the translation of the origin of the viewer's reference

frame. The instantaneous velocity of each feature-point can be written as
X =QAX +V Vi=1...N (2)

where — under the approximation that the velocity is constant between successive samples — the

parameters (V,(2) are related to (7', R) by the exponential map [24]. In particular, R = ",

where QA belongs to the set of 3 x 3 skew-symmetric matrices, called so(3), and describes the



cross-product of € with a vector in IR®. If we integrate equation (2) between time t, and the

current time t, we end up with an equation of the form
X4 (t) = "Ry, X' (to) + 'Ty, (3)

where ' R;, and *T}, indicate the rotation and translation of the reference frame at time ¢ relative to
the one at the initial time. The parameters (7', R) that describe a rigid motion form a Lie group,
called SE(3) (Special Euclidean group acting on IR?), and their instantaneous counterparts,
(V,QA) are elements of the corresponding Lie algebra so(3). For an introduction to the Lie
groups SO(3), SE(3) and their corresponding Lie algebras so(3), se(3) see for instance [24].
What we can measure is the perspective projection 7 of the point features onto the
image plane, which for simplicity we represent as the real projective plane RP? = IR*\IR. The

projection map 7 associates to each P’ # 0 its homogeneous coordinates :
7:R*— {0} - RP*; X x (4)

T
where x = 7(X) = [ % % 1 ] . x is usually measured up to some error n, which is well

modeled as a white, zero-mean and normally distributed process with covariance X.,,:
y'=x' +n' n' € N(0,%%). (5)

In practice, feature tracking and optical flow are subject to various sorts of errors: (a) pixel
noise in the image, (b) erroneous correspondence and (c) violations of the brightness constancy
assumption [3]. Any algorithm for reconstructing 3-D motion and/or structure in real-time must
handle such errors in an automatic fashion, by rejecting outlier measurements due to mismatches,
and by exploiting the statistics of the localization error and the redundancy in the measurements
in order to minimize their effects. We will briefly discuss how to reject outliers in the companion

paper [35].



2.2 Limitations of the basic model

The ensemble of equations (1)(5) or (2)(5) may be viewed as either a discrete-time or a continuous-
time dynamical system that describes the evolution of point-features in space, depending upon
a set of parameters that encode rigid motion. Equations (1) and (2) are called state equations
(or model equations), and X* are the states. Equation (5) is called measurement equation, or
output equation. The motion parameters may be viewed either as the input to the model, or
as unknown parameters in the model equation. Correspondingly, the task of estimating struc-
ture and motion may be seen as either a mixed state-estimation/model-inversion, or as a state-
estimation/parameter-identification problem.

If the motion parameters (T, R) or (V,€)) were known, then the position of the points in
space could be recovered easily by estimating the state of the above dynamical systems (1)(5)
or (2)(5) using an observer, for instance in the form of an EKF as in [21, 25, 36]. Vice-versa,
if the trajectory of the points in space was known, their motion parameters could be estimated
by solving (2) as a linear algebraic equation. When neither the motion nor the structure of the
scene are known, the problem becomes significantly more complicated, for we have to estimate
both the state of the above models, and identify their parameters.

Since we measure the output of such models over an interval of time, we may try to analyze
the space! built of time-derivatives (or time-delays) of the output and see if it exhibits enough
structure to allow reconstructing both the unknown states and the unknown parameters. Unfor-
tunately, the model that comes out of the basic constraints is “driftless”, in the sense that all of
its dynamics depends upon the unknown parameters: if we call £ the state of our system, and
u the unknown parameters, then the dynamic equation of the model can be written in the form
£ = f(&) + g(&)u with the drift vector field f(£) = 0. This means that all constraints obtained
from time-derivatives of the output couple the unknown states with the unknown parameters.
Furthermore, it can be proven that only the first derivative produces independent constraints on
the unknowns, and therefore it is not possible to unravel both the state of the model and its

parameters [31].

1Such a space is called the “observability space”, and is constructed by computing Lie derivatives of the output
along the state vector field.



At this point we face a choice of two opposite strategies. We may “dynamically extend” the
model, which means that we take the derivatives of u to be the unknown parameters, rather
than w itself. Then it is possible to insert u into the dynamical model, and make simplifying
assumptions about its time derivatives. Alternatively, we may try to “reduce” the original model
by decoupling the states from the parameters. These alternative strategies are discussed in the

next two sections 2.3 and 2.4.

2.3 “Think big”: dynamic extension and observers

Let us enlarge the state of the model described by (1)(5) or (2)(5) by including the unknown mo-
tion parameters into the state. To do so, we have to assume some dynamics for such parameters,

i.e. some model of the form

{T@+D=JNT@JW@)OI{V:f”M”” (6)

R(t+1) = fr(R(t),ngr(t)) Q = fa(Q,n0)

where in essence we have transferred our ignorance on T, R,V ), onto fr, fr, fv,fa and
nr,ngr, Ny, Na, Which we do not know. If some a-priori information is available on how the
motion parameters evolve, for instance the dynamics of the vehicle on which the camera is
mounted, or a bound on acceleration, then it may be written in the form of a dynamic system
and inserted into the model. For instance, the simplest constraint of constant velocity may be

written as

T(t+1)=T(t) V=0
or { (7)

{R@+U R(t) {Q=Q
and inserted in the state of the model (1) or (2). In such a case f, is a linear map, and n, =0,
where * stands for T, R, V, ). The next simplest model is a first-order random walk (Brownian
motion), where n, are appropriately defined white, zero-mean and Gaussian noises. It is important
to stress that any other dynamical or statistical model may be inserted in place of f,, as long as
it preserves the observability properties of the original system. If the reader is not comfortable
with modeling motion as a first-order random walk, we suggest reading the companion paper [35]

first.

Once we have inserted the parameters into the state, the problem of recovering simultaneously



motion and structure becomes that of estimating the state of the augmented model using an
observer?, whose state-space is now a bit more complicated than it used to, for the motion
parameters belong either to the Lie-group of Euclidean motions, (T, R) € SE(3), or to the
corresponding Lie-algebra, (V,QA) € se(3). If the motion parameters are modeled as a first-
order random walk, and the measurement noise is white, zero-mean and Gaussian, then one may
set up an observer (or “filter’, for instance an EKF) for estimating both structure and motion

simultaneously from the augmented model:

(Xi(t+1) = R#)Xt) +T(t)
T(t+1)=T(t) + np(t)

< R(t+1) = R(t)enr")

LY (t) = m(X'(t) + n'(t)

where np,ng and n' are white, zero-mean Gaussian noises and R(t) € SO(3) and T'(t) € R®.
This model is essentially common to all recursive motion estimation methods seen in the literature.
Non-structural variations of this model include change of state coordinates (for instance object-
centered or world-centered reference coordinates), and a change of the parameter dynamics,
for instance higher-order random walks. A change of the projection model (for instance weak
perspective or orthography) is significant from the modeling point of view; however, all the
essential features of the problem are captured by the perspective projection, and all the concepts
that we will treat in this paper can be extended to other projection models quite easily.

There are two problems with such an approach: the high-dimensionality of the models, and
the lack of local observability. Suppose we are looking at number of points N = 100, which
is a typical number of feature-points in images of realistic sequences. Then the state of the
filter just described has dimension 305, since there are 300 coordinates of the points, 6 motion
parameters, and one unknown scaling factor that affects the depth of the scene and the norm

of the translational velocity. Moreover, due to occlusions and appearance of new features, the

2\We recall that an observer for a dynamical model is itself a dynamical system that takes as inputs the
input/output pairs of the original model, and returns as output an estimate of its state. For an introduction
to the basic concepts of linear observers, see for instance [19]. The Kalman filter represents an instance of an
observer for a special class of linear systems driven by white, zero-mean and Gaussian noise. For an introduction
on Kalman filtering, see for instance [17].
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number of visible features N(t) changes in time, which causes the filter to have a variable
dimension, with the problem of initializing new states without affecting the continuity of the
existing states. When a new feature enters the state, it needs to be initialized and the estimation
error for the position of that feature will have a discontinuity, which propagates onto the estimates
of the motion parameters. Therefore, even when the motion is smooth but the set of feature
points changes in time, the estimates of motion are subject to discontinuities. In [23] a method
is proposed for dealing with such a situation, which uses a “variable state-dimension filter”.

Furthermore, the EKF performs a local update on the residual of the prediction with a gain
computed on the linearization of the model which, in the case just described, is not locally
observable [31]. As an intuitive argument, first observe that the model described by (8) is “block
triangular”, in the sense that the dynamic of each feature point X* depends only on itself and
on the motion parameters, but not on other points X7 | © # j. This means that, as far as the
observability is concerned, it does not matter how many points are visible (of course accuracy is
affected). In particular, the observability of motion parameters does not depend upon the number
of visible points, while it is intuitive that the more points are visible, the better the perception of
motion ought to be.

For instance, consider a camera moving with constant velocity on a short interval of time
while viewing a single point. If the image of the point moves along the horizontal axis = of
the image plane in the positive direction, this could correspond — for instance — to the viewer
translating along the opposite direction —X, or rotating about the axis Y. In few words, these
two motions are locally indistinguishable. However, under the assumption of constant velocity,
when we let the point move for a longer period of time we can distinguish these different motions,
for translational motion along — X produces a constant velocity motion on the image plane, while

a rotational velocity about Y causes the projection to escape in finite time.

2.4 “Think small”: reducing the order of the model

The alternative to extending the original model (1)(5) or (2)(5) is to try to decouple the states
from the unknown parameters, and reduce the original mixed estimation/identification task into

either a state estimation independent of the unknown parameters, or a parameter identification
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independent of the unknown states. The states or parameters that have been eliminated can
be recovered a-posteriori, once the remaining states or parameters have been estimated, using a
standard observer.

In the next two sections we will see two different approaches for reducing the model by either
explicitly decoupling the states of the original model from its unknown parameters, or implicitly

imposing that some function of the states and the parameters is held constant.

3 Explicit reduction

In this section we will explore techniques for decoupling the unknown states of the original models
(1)(5) or (2)(5) from the unknown parameters. We will first apply “verbatim” the idea of the
so-called “reduced-order observer” for eliminating two out of the three space-coordinates for each
point. We will then push the same idea for further decoupling all the states corresponding to
structure and end up with a dynamical model where the only unknowns are the motion parameters.
In the continuous-time case we will end up with a model having only two unknown parameters,
which correspond to the direction of translation, while in the discrete-time case it is not possible
to decouple the unknown rotation parameters from the model. Such an asymmetry motivates

alternative decoupling methods, which we discuss in the next section 4.

3.1 The basic reduced-order observer: simultaneous depth and

motion estimation

The reduced-order observer [19] is a long-established technique for reducing the dimension of
an observer for a dynamical system. The basic idea consists in “solving” the measurement
equation for some of the states, and then substitute into the model equation. The states that
have been eliminated are no longer part of the state-space, and their state equation becomes
a new measurement equation, which involves derivatives of the measurements. The original
measurement equation becomes now trivial, for it has been used to define the states to be

eliminated.
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For instance, consider the simple linear model

T1 = 01171 + G12%2
To = A21%1 + Q2272 9)

Y = C1T1 + C2To

and “solve” the measurement equation for o, so that zo = % If we now substitute x5 into
the dynamic equations, we get a new state model for x; which does not involve x5 but has an
“output injection” term, and a constraint involving the measurements y and  and the unknown

state z;:

1 = (an — CL12§—;)$1 + G2y
(10)

2
1. 1 [4 _ [4 c ¢
w¥ (a2 —awd)y = (a1 g — axng + a1 + a21)71.
The previous measurement equation is now the identity ¥ = y. We may re-write the above model

as

(11)

T1 = ax; + ky
{ Yy = Cx1
where ¢ hides a time-derivative of the measured output y. It is possible to get rid of this
undesirable effect by either an output-dependent change of coordinates, as done in the original
reduced-order observer [19], or by integrating the measurement equation over a sample time
interval.
Let us apply this simple idea to the extended model (8) derived from (2)(5), after integrating

it from the initial time ¢y to the current time ¢. In the simplest case of constant velocity, we have

( ~7ri

.
—~
S
SN~—

I
ja)

(12)

I
<B=

Q
V
LY'(1) = 7 ("Reg ()X (H) + T3 (V. ©2)) + ' (1)
where (*T;,, R,,) describes the change of coordinates between the initial (at #) and the current
(at t) viewer's reference frame. After a change of coordinates X* — x'Z?, we can solve the

measurement constraint for x*, substitute into the state equation, and integrate the measurement

equation starting from the initial time-instant. By doing so, we can eliminate 2N states, and be
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left with a model having IV + 6 states, the depth of each point and the motion parameters:

Zi(ty) =
Q=0
< (13)
V=0
LY (t) = 7 ("Ry, ()" (to) Z' (to) + "Tiy (V, ) + 0 (t) + 0.

Since we cannot measure x'(t,), but only its noisy version y*(ty), we have to add a noise term
n; to the measurement equation.

One may now write an EKF for such a model, where the constant states are modeled as first-
order random walks, in order to estimate simultaneously depth and motion of the points. This
approach has been pursued by Azarbayejani et al., although derived with different motivations.
In [2], an extended model is considered that has a second-order random walk for the motion
parameters, and an alternative projection model that allows orthography as a subcase (see the
companion paper [35] for more details). Note that, since there is a scale factor ambiguity, the
filter will estimate the depth of each point and the translational velocity modulo a one-dimensional
subspace. One possible way of getting rid of such an ambiguity is to saturate the filter along any
direction corresponding to a state subject to the ambiguity by setting the variance of the model
error to zero [17]. For instance, one may initialize an arbitrary point to be at distance one.

The model above (13) is structurally similar to (8), and still suffers the shortcomings outlined
in section 2.3, for it includes the structure parameters and the state equation is “diagonal”. The
model lacks local observability [31], and it makes it difficult to handle occlusions and appearance
of new features in a principled way, since the errors in the transient following the introduction of
any new feature propagate into the current estimate of the motion parameters. These are the
main reasons that motivate us towards pushing the idea of the reduced-order observer one step
further, in order to eliminate the structure parameters from the state, and be left with models

that only involve motion and measured projections.
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3.2 Pushing the model reduction: structure-independent motion

estimation

In the previous sections we have seen how the constraints of rigid motion and perspective pro-
jection naturally define a nonlinear dynamical system, whose state comprises the structure and
motion parameters. We have also seen how the dimension of such a state can be reduced by the
number of measurements, using the concept of the reduced-order observer.

Although we have reduced the dimension of the state, it still involves structure parameters
and, therefore, it can vary in time due to occlusions and appearance of new features. The next
step consists in applying the same idea of the reduced-order observer to the already-reduced

model in order to get rid of structure parameters altogether.

3.2.1 Continuous-time: the Subspace model

Let us apply the idea of the reduced-order observer twice to the model of equation (2)(5). As
we have seen in section 3.1, in the first run we can eliminate 2N states, corresponding to the
measured projections of each feature-point, and be left with NV + 5 states, describing the depth of
each point Z’ and the motion parameters. Now we can “solve” the new measurement equation,
which in fact corresponds to the image motion field (and is approximated by the optical flow),
for the depth parameters Z°.

Since the expression of the image motion field x is linear both in the inverse depth and the
rotational velocity, one may eliminate both depth and rotation, as done in Adiv [1]. Heeger and
Jepson [14] proposed to use orthogonal projections to perform such an elimination: consider the

time-derivative of the projection of each feature-point, which can be written in the form
(1) = €', V) | 70 (14)

where Ci(x!,V) = [A'V | BY], and

Al =

1 0 —zt gt = —giyi 142 —yi
0 1 —y



The derivative of the third (projective) coordinate of x* = [z* y* 1|7 is identically zero, and has
therefore been neglected. Given a sufficient number of point-features, the equation
1 L o

%= C0, V)i

: (16)

where
AV B!
C(x,V)= : ) (17)
ANV BN
may be solved in a least-squares fashion for the inverse depth parameters and the rotational

velocity, provided that N > 3, and then substituted into the same equation, which becomes
% = CC'% (18)

-1 . . . L .
where CT = (CTC) CT denotes the pseudo-inverse. This leaves us with a constraint involving

only translation V' and measured image-coordinates/flow:
[I-cct]x=ct(xV)kx=0. (19)

Since there is an overall scaling factor ambiguity, only the direction of translation ﬁ can be
recovered, which we represent by imposing V' | ||V|| = 1. The above constraint describes
a nonlinear dynamical system of a very peculiar kind, called Exterior Differential Systems [8]
(EDS), with the parameters V constrained on the unit-sphere S?. We may therefore write our

dynamical model as

{CJ‘(X, V)x=0 V e §? (20)

yt=xt +n Vi =1...N.
Now, estimating motion is equivalent to identifying the above EDS, with parameters V on a

sphere. Once such parameters have been identified, the remaining ones can be recovered a-
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posteriori through the “pseudo-measurement”

1 L 0| =C'x (21)

Zl .« .. ZN

We will see in the companion paper [35] how to perform the identification of models of the form

(20).

3.2.2 Discrete-time: the Essential model

The idea of the reduced-order observer may be applied also to the discrete-time system (1)(5).
The tool to be used for eliminating the depth parameters is the so-called “Epipolar geometry”
(see [10] for a review), which essentially resorts to the well-known coplanarity constraint, first
derived by Longuet-Higgins [20].

When a rigid object is moving between two time instants ¢ and ¢ + 1, the coordinates X" (t)
of a point at time £, their correspondent Xi(H— 1) at time ¢+ 1, and the translation vector T" are
coplanar. Their triple product is therefore zero. This is true of course also for x(¢), x*(t+ 1) and
T, since x' is the projective coordinate of X' and therefore the two represent the same direction
in IR?, interpreted as the “ray-space” model of IRP? [30]. When expressed with respect to a

common reference frame, for example that at time ¢, we may write the triple product as
x'(t+1)" (T A (RX'(t)) =0 Vi = 1:N. (22)

Let us define Q = (T'A)R, so that the above coplanarity constraint, which is also known as the

“Essential constraint” or the “epipolar constraint”, becomes
x'(t+1)TQx'(t) =0 Vi=1...N. (23)

The above constraint may be interpreted as a discrete-time implicit dynamical model, with un-

known parameters constrained to be of the form T'A R. Estimating motion therefore corresponds
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to identifying the model

{ (Qx'(t))"x(t+1)=0 QekFE (24)

yi=x'+n! Vi=1...N, n'e€ N(0,%,)

where now the parameters QQ are constrained to belong to the so-called Essential manifold
E={SR| Re SO3), S=(TA) € s0(3)} c R**3 (25)

normalized in order to take into account the scale factor ||T’|| = 1. The Essential manifold is
a differentiable manifold of dimension 6 (or 5 after normalization), which is isomorphic to the
tangent bundle of the rotation group 7'SO(3), and therefore to the Euclidean group of rigid
motions SE(3). For a discussion of the topological and differential properties of the Essential
manifold, see [32], and for a thorough description of its algebraic structure, see for instance [10,

22].

3.3 Asymmetry between continuous and discrete-time

The application of the simple idea of the reduced-order observer led us to formulating two implicit
dynamical models involving only motion parameters and image coordinates.

In the continuous-time case we could push the idea of the reduced-order observer up to the
point in which we had a model with only two parameters. This was reasonably simple, for the
parameters of rotation appeared linearly in the reduced measurement equation [14]. This did not
work in the discrete-time case. In fact, although the elements of the rotation matrix R appear

A which we

linearly, the rotation parameters () appear through the exponential map R = e
cannot invert in closed-form in order to substitute it into the model equation and apply the trick
of the reduced-order observer.

Therefore, there is an asymmetry between the instantaneous case and the discrete-time case.

This will motivate us to explore alternative methods for reducing the state of the observer, which

is what we do in the next section.

18



4 Implicit reduction: motion from fixation

In this section we explore how to reduce the order of the observer by stabilizing some particular

functions of the state.

4.1 Output stabilization and geometric stratification

Suppose that we are told that some of the states of a dynamical model are fixed. Then we may
as well constrain the observer to the remaining states, and eliminate the constant ones from the
dynamical model. The same applies if a function of the states is held constant. In fact, consider
a point in the state-space manifold, P € M. If f : M — R is smooth, and 0 = f(P) is a
regular value, then the pre-image f~'(0) C M is a submanifold of M [13], and the point P
is constrained onto such a submanifold. In this case it is possible to find a set of coordinates
where some of the parameters are constant, and we can therefore concentrate our attention on
the remaining ones.

Therefore, if we view some function of the state as an output (measurement equation) of the
dynamic system, and this output is held constant, or stabilized, we may identify a “slice” of the
state-manifold, and constrain the model on such a slice.

Although the choice of which function to stabilize is arbitrary, we will consider three simple
instances: the image-motion of a point, a point and a line, and a plane. By stabilizing such
outputs, we identify slices of the Essential manifold, which build a geometric stratification of the

problem of estimating motion under fixation constraints.

4.2 Choosing a control action

In order to stabilize a particular function of the image, we could either actuate the camera,
and move it in space ( “mechanical control”), or pre-process the image by considering changes
of coordinates that depend upon the outputs, without acting on the support of the camera
(“software control”). For instance, keeping a single feature point fixed on the image plane can
be accomplished both by rotating the camera about the center of projection (or about another

point in space), or by shifting the origin of the image-coordinates. As far as the effects on motion
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Stabilized Compensating | Corresponding | Residual | State-space
feature 3-D motion image DOFs manifold
deformation
none none none 5 E Essential mfd
point 2-D camera | image center | 4 S? Sylvester mfd
rotation displacement
point+line rotation  about | image center shift | 3 S®  3-dimensional
optical center + rotation Sylvester mfd
plane no feasible 3-D | planar warping 2 s0(3) skew-
rigid motion symmetric  unit-
noom 3 Xx 3
matrices

Figure 1: Geometric stratification of the problem of estimating motion under the
compensation of the image-motion of a point, a point and a line, and a plane.

estimation are concerned, the two methods are equivalent. A few gaze-control techniques which
guarantee exponential convergence are described in [33], while image-shift registration techniques
that achieve fixation in a single step are described, for instance, in [39].

Fixating a point and a line on the image plane may be easily achieved by fixating a point and
then rotating the image until another point comes to the desired line. This may be accomplished
both by rotating the camera about the fixation axis, or by rotating the image about the optical
center with a purely software operation.

Fixating a plane in the image, however, can be only accomplished by manipulating, or pre-

processing, the image, as described in section 4.5.1.

4.3 Stabilization of a point (fixation)

Let us assume that we have applied any fixation technique that provides us with a sequence
of images where the projection of a given point remains fixed on the image-plane. Since the
projection of the fixation point is stationary, the object (scene) is free only to rotate about this
point, and to translate along the fixation line. Therefore there are overall 4 degrees of freedom
left from the fixation loop. These four degrees of freedom are encoded into the rotation matrix

R = €™, and in the relative translation along the fixation axis v € IR. The epipolar representation
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presented in the previous section applies immediately once we represent the translation 71" as

T

T(R,’u)i —Ri3 —Rys —Rsz+v ) (26)

d(t+1)
d(t)

and v = # 0 is the ratio between the distance of the fixation point at time £ 4+ 1 and the
same distance at time ¢.

The coplanarity constraint (23) also holds in the case of fixation, once we have substituted
the appropriate expression for T'. Since there are four degrees of freedom, the parameters (2
and v will now lie on a four-dimensional subspace of the Essential manifold. Indeed, it can be

shown [33] that the Essential matrices under the fixation constraint are all and only the 3 x 3

Essential matrices that satisfy the following Sylvester’'s equation
Q(R,v) = RST +vSR (27)

where S = [0 0 a]TA and « is the arbitrary scaling factor due to the homogeneous nature of
the coplanarity constraint. We will call S* the four-dimensional submanifold of the Essential
manifold which is defined by the above equation after normalization. The S* manifold is locally
diffeomorphic to IR x SO(3) and hence to IR*.

Therefore, in order to estimate motion under the fixation constraint, it is sufficient to consider
the epipolar constraint where now the parameters are constrained not on the Essential manifold,

but on the S*-manifold. We have therefore to deal with a model of the form

{(Qxl(t))TXi(Hl) =0 Qe o5

y'(t) = x'(t) + na(t)

where

S* = {QeE | Q=RST +vSR,R e SO(3),
veTR,S=1[001]"A}. (29)

Estimating motion reduces to identifying the above dynamical system with parameters on S*.
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4.4 Stabilization of a point and a line

Suppose now that, in addition to fixating a point, we can maintain a line passing through it fixed
in the image plane. We are essentially in the same situation described in the previous section, once
we have “frozen” the degree of freedom corresponding to cyclorotation (rotation about the optical
axis). Therefore there are overall 3 degrees of freedom. The Essential matrices corresponding
to motions that obey the “point plus line” fixation constraint must lie on a three-dimensional
submanifold of the submanifold S* of the Essential manifold E, since the point-fixation constraint
described in the previous section is satisfied. The only modification that occurs is that now there
is no cyclorotation. Therefore the parameter space becomes

[“’1 w2 0 ]TA}.

S=8"nNn{R=e (30)

Hence, under the “point plus line” fixation assumption, we end up with a model of the form

{(Qx%t»w(tﬂ) =0 acs o

y'(t) = x'(t) + na(t)

which needs to be identified in order to estimate the motion parameters.

4.5 Stabilization of a plane

We now proceed in our stratification by assuming that we are able to “compensate” the image
sequence in such a way that the points that lie on some plane (not necessarily a physical plane
in the scene) remains fixed in the image plane. In this case there is no physical motion of the
camera that achieves this compensation (besides locking the camera to the plane). Therefore we

need to “deform” the images of the sequence in order to account for the motion of the plane.

4.5.1 Compensation of plane-motion: warping

Let us assume, for the moment, that all points in the scene lie on a plane — not passing through
the origin — described by IT = {X, € R?® | a’X, = 1}. We indicate with x, € RP? the

projective coordinates of the generic point of the plane II. We will now see that, as the plane 11
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moves rigidly in space, its image deforms according to a projective transformation, i.e. a linear
transformation of the projective coordinates. In fact, we may write the evolution of the 3-D

points of the plane as
X:(t+1)=ROXL(t) +T()a" X:(t) = At)X(t) (32)

where A(t) = R(t)+T(t)a” is a 3 x 3 invertible matrix. The projective coordinates of the points
on the plane obey a similar relation

Xt (t+1) ~ A()XE () (33)

s

where the symbol ~ indicates equality up to a scaling factor (projective equivalence). Given 4
or more point-correspondences on the image-plane, we may solve the above equation for the 8
parameters of A that are free after normalization.

Once the matrix A has been estimated, up to a scaling factor, we may undo the transformation

by multiplying the transformed points by A~
xX(t+1)" = A X (t+1) =x1(t). (34)
Therefore, such a warping leaves the points of the plane fixed in the image [4, 27, 29].

4.5.2 Plane-plus-parallax representation

In the previous subsection, we have assumed that all points of the scene lie on the plane II. Note
that, if we apply the above procedure to an unstructured cloud of points, and we estimate the
matrix A using total-least-squares [12] from equation (33), then we compensate for the average
plane in the scene.

Now, let us assume that we have compensated for some plane, for instance the average plane,

and see what happens to the points X* that do not lie on such a plane, after the warping with
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A~1 In general, x(t + 1) # x'(t). More specifically, we have

x'(t+1)" ~ A7'X(t+1)=(R+Ta") X' (t+1)

~ (I —R"™Ta")"'RT[RX'(t) + T] (35)
where [-] denotes the projective coordinates. If we call 7" = RTT, then we can write

x{(t+1)" ~ (I-Ta" ' [Xt) + T

T'aT ,
~ [T+ — X '
( + 1—aTT') [(X'(t) +T'] (36)
which may be finally written as
x'(t+1)" ~x'(t) + B ()T (37)

. 1 T~ . .
where ((t) = (1 + Tli:T(T(,t)) is a scalar factor. Therefore, the last term can be interpreted as

a residual, which is in the direction of the epipole (the projective coordinates of the direction of
translation 7). The derivation above is taken from [29].

This representation, consisting in the motion of a plane — encoded by the matrix A — and the
residual parallax in the direction of the epipole — encoded by (3‘(¢) — is known in the literature as
the “plane-plus-parallax” representation, and has been developed in [4, 27, 29].

Now, let us see how warping affects the setup of epipolar geometry. It is immediate to verify
that

x“(t+ 1) (T'Ax(t) =0 T'eS? (38)

and, therefore, the effect of rotation has been canceled out by the image warping. We may

represent the overall model as, again, an implicit dynamical system, with parameters on a manifold

{ (@) x"(t+1) =0 Q=T'A € s0(3)NS? = S? (39)

y'(t) = x'(t) + ni(1)

where the last equivalence follows from the isomorphism between so(3) and IR® [5]. Thus, the

plane-fixation constraint corresponds to Essential matrices which are of the form Q = T'A. Due
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to the normalization constraint on 7", we have only two degrees of freedom left, and rotation has
been fully decoupled from translation. This model may be considered the discrete-time equivalent
of the subspace constraint, for it fully decouples structure and rotation, and leaves a dynamic

constraint only in the direction of translation.

5 Conclusions

In this paper we have proposed a unified framework for modeling “Structure From Motion”. Most
of the dynamic models currently used in the literature can be derived following very simple ideas
from the theory of dynamical systems. The first unifying concept is the so-called “reduced-order
observer”, which allows deriving the coplanarity constraint of Longuet-Higgins [16, 20, 42] and
the subspace constraint of Heeger and Jepson [14] as a unique procedure from the basic dynamical
model, which is essentially common to all recursive structure and/or motion estimation techniques.
The “Essential filter” [32], and the “Subspace filter” [34] are methods tailored for estimating
motion from such constraints, interpreted as implicit dynamical models with parameters on a
manifold.

The asymmetry between the continuous-time case, where rotation is easily decoupled from
translation, and the discrete-time case, where such a decoupling is not possible, is resolved in the
context of output stabilization. The constraints resulting from fixating the motion of a point, a line
and a plane are derived in a unified fashion as Essential filters constrained to submanifolds of the
Essential manifold. This procedure generates a geometric stratification of the Essential manifold,
which unifies the work on fixation [11, 28, 39] and the so-called “plane plus parallax” [29, 27]
approach in the framework of epipolar geometry [10].

The novelty is that all of these models are no longer treated as algebraic constraints on motion
and/or structure parameters from a number of views. Rather, they are dynamical systems with
unknown parameters on differentiable manifolds. Such dynamical systems are of a very peculiar

form, which is that of Exterior Differential Systems:

{ S, )5 =0 beM (40)

yvi=x‘+n' Vi=1...N
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where x* € IRP? are the projective coordinates of each visible feature-point and ¢ are the
unknown parameters that encode the motion of the viewer relative to the scene. The only thing
that changes among different models is the parameter manifold M. We derive similar models
in the discrete-time case. The models (20), (24), (28), (31), (39) all fall within this category,
where the manifold M is, in each instance, a submanifold of the Essential manifold E, defined
in (25). In all cases, the motion parameters may be estimated by identifying the parameters of

the corresponding model in the form (40), as we discuss in a companion paper [35].
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