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Abstract— We propose a nonlinear model for tracking a
slowly deforming and moving contour despite significant
occlusions. The contour is represented implicitly, and its
motion is described by the action of a finite-dimensional
group; we estimate both the implicit representation of
the contour (its shape) and its motion. Our contribution
consists in defining a generative model that is not subject
to arbitrary re-parameterization, choice of (non-unique)
key points or control points, and allows enforcing a
dynamical model of motion when it is available. Otherwise,
our approach allows enforcing simple phenomenological
models, for instance low acceleration or low jerk.

I. I NTRODUCTION

We are interested in tracking moving objects in a
sequence of images. For us, an “object” is a region
of the image that has a distinct photometric signature,
something that distinguishes it from the rest of the
image, or “background.” For instance, it could have
quasi-homogeneous intensity, or some other statistic that
is uniform or almost uniform within the object, but
distinct from the rest of the image . . . for the most part.
In particular, we are interested in being able to track
the object despite it being invisible or partly invisible at
certain instants of time. In addition, we want to be able
to track the object despite changes in the geometry, and
possibly the topology, of the region that determines it.

This latter issue of deformations has received signifi-
cant attention in the literature, which we review briefly
in the next subsection. In particular, [29] characterizes
the tracking of a moving object, where motion can be de-
fined by a finite-dimensional group (for instance affine),
through the introduction of a generative model of the so-
called “average shape,” from which each measurement
is obtained with minimum deformations, measured with
respect to a chosen energy functional. While that work
hinted at the problem of extending the framework to the
case when the underlying shape average is changing over
time, it did not offer a technical solution for tracking
with an explicit dynamical model.

Now, in order to track regions through occlusions, a
motion model is necessary to predict, or extrapolate, the
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state of the object in lack of measurements. This issue of
learning motion dynamics has also gathered considerable
attention in the past, and indeed some of the most pop-
ular particle filtering techniques were developed in the
context of contour tracking [6]. In this paper, however,
we consider objects as regions bounded by closed pla-
nar contours, represented implicitly. These are infinite-
dimensional objects, and there is no existing filtering
technique suitable for such infinite-dimensional state-
spaces. Therefore, this manuscript represents a small
step in a significantly novel and challenging direction,
as we describe in the next subsection. Before we do so,
however, we point out that – although a rigorous solution
to this problem is elusive – approximate filtering can
be performed in a way that results in simple, robust
and efficient algorithms that we validate experimentally
in Section IV on sequences of images with severe
occlusions.

A. State of the art and our contribution

Contour tracking has been a very active area of
research in vision for many years. The book of Blake and
Isard contains a snapshot of the state of the art as of 1998
[6]. What makes the problem different from a standard
tracking problem, as studied in signal processing and
control theory, is the fact that the representation of the
state of the model and of the measurement map is non-
trivial, whereas in traditional tracking the “target” is
usually a point or a collection of points in a vector space.
In particular, a common approach in contour tracking
is to represent the contour using a finite-dimensional
representation. This includes various types of splines
or “snakes” (see [6], [26] and references therein), var-
ious discretizations of the contour, for instance using
polygonal approximations [27], [28]. In all these finite-
dimensional approximations, a dynamical model is intro-
duced by modeling theparameters(e.g. the nodal points,
or the control points, of the representation) as the state
of a dynamical model, typically assumed linear (e.g. au-
toregressive moving-average model). The difficulty with
this approach is that each contour is representednot by
a set of parameters, but by an entire equivalence class of
parameters obtained by moving the control/nodal points:
There are infinitely many choices of control points
that result in substantially the same measured contour.
Therefore, many have resorted to additional constraints,
for instance equi-spacing of polygonal vertices, fixed



number of equi-distant control points etc. Additional
techniques rely on describing regions using “blobs” or
other objects with pre-specified shape, or by collections
of spatial configurations of blobs. This is common for
the case of cars and people (see for instance [7], [4]
and references therein); such techniques have proven
successful even in the case of severe occlusions [11].

A substantially different approach is taken when
the contour is represented in the continuum. For in-
stance, “deformable templates,” pioneered by Grenander
[10], do not rely on “features” or “landmarks;” rather,
images are directly deformed by a (possibly infinite-
dimensional) group action and compared for the best
match in an “image-based” approach [31], [2], [30],
[20], [16], [25], [17], [15], [9], [18]. A common model
is to represent the contour implicitly, as the zero level
set of a function (e.g. a signed distance function) that
evolves in time. For instance, geodesic active contours
[8], [14] have been successfully used for tracking, for
instance, cardiac motion in ultrasound imaging [24].
In most of the current approaches, however, “time”
only indicates the index of the iterative procedure used
to estimate the contour, and most motion models are
essentially assuming that the position of the object at
time t + 1 is close to that at timet, and therefore the
best estimate of the contour at timet can be used to
initialize the same procedure at the next instant [21].
In this paper, we want to be able to enforce higher-
order motion models, for instance due to inertia and
other constraints on acceleration. The idea is to set up a
framework where a detailed motion model can be used,
if available, and other statistical or phenomenological
motion models can be used otherwise. For instance, we
may want to enforce regularity by imposing that velocity
is small, or that acceleration is small, or that jerk (the
derivative of acceleration) is small and so on.

Ideally, we would like to derive an optimal framework
to do so. This would entail estimating the conditional
density of the state (motion and shape of the deform-
ing contour) given the measurements up to timet
(noisy/deformed measurements of the contour, possibly
with significant missing pieces). This is easy to do
for linear dynamical models driven by additive, white,
zero-mean Gaussian noise, but is out of the question
for a state that is infinite-dimensional (the shape of
the deforming contour), has non-trivial geometry (the
group structure), highly non-linear measurement equa-
tions (due to occlusions), and the uncertainty is func-
tional, rather than additive (the diffeomorphic model of
the contour deformation). Therefore, we can only resort
to approximate filtering techniques, with no available
analytical statements about their performance. While
filtering for non-linear finite-dimensional models has

received a lot of attention since the age of Wiener in
the mid forties, and has culminated in several viable,
although not-proven-optimal techniques, such as the
Extended Kalman Filter [12], the multimodal sum-of-
Gaussian filter [1], particle filtering [6], various forms of
multi-modal, multi-target tracking based on interacting
multiple models (see [3] and references therein) and
various numerical approximations of the Mortensen-
Zakai equation, there is very little work on filtering
for infinite-dimensional state spaces. Blake and Brockett
first confronted this problem in [5], where they address
the problem of estimating a moving curve (represented
as the graph of a function) despite missing segments
of the curve. In our case the problem is more difficult
because we cannot rely on the graph structure, and
furthermore our solution is entirely different from that
suggested in [5].

II. FORMALIZATION OF THE PROBLEM

At any instant of timet ∈ R, let µ(t) : S1 → R2 be a
closed planar contour,g(t) ∈ G be a finite-dimensional
group action (e.g. the Euclidean groupG = SE(2)
or the affine groupG = A(2)), and ht : R2 → R2

a diffeomorphism that can change over time (hence
the subscriptt). We measure a closed planar contour
y(t) : S1 → R2 that is a local deformationht of the
static contourµ moving under the action ofg. Therefore,
formally we can write a generative model for the data
y(t) as follows:

µ̇(t) = 0
ġ(t) = v̂g(t)
v̇(t) = α(t)
y(t) = ht(g(t)µ(t)).

(1)

In this model, the first equation embodies the assumption
that the average shape is constant. If this is not the case,
but still it varies slowly relative to the intrinsic dynamics
of y(t), we could write formally thatµ̇(t) = w(t).
We will comment later on what this notation actually
means. If there are no assumptions made on how the
average shape evolves, the tracking problem cannot be
meaningfully addressed [29]. The second equation is
just a deterministic integrator that says that pose is
the integral of velocity, and the third equation says
that velocity is the integral of acceleration, which we
do not know. We could assume, again, thatα is an
unknown constant, or that it varies slowly relative to the
dynamics ofy(t). Finally, the last equation says that the
measurements are a perturbation of the average shape
in the moving frame. Our goal is to inferµ, g and v
from measurements ofy. In particular, we are interested
in the estimate that results in the “smallest” possible
perturbationht(·). This model is just formal notation,



and in order to design, implement and analyze inference
algorithms we must specify (i) a representation forµ, (ii)
a local coordinate system forg, and (iii) a discrepancy
measure between the datay(t) and the model of the data,
ht(g(t)µ(t)). The second issue is straightforward since
canonical coordinate charts for matrix Lie groups are
easy to derive and compute using the exponential map
[19]. The first and the third issue are more complex and
highly interconnected.

In fact, consider a parametric representation ofµ(t),
for instances 7→ µ̃(t, s). The measured contoury(t)
can also be parameterized vial 7→ ỹ(t, l). Unfortu-
nately, thecorrespondenceof s and l is not known,
and therefore the measurement equation relies on an
estimate of the reparametrizationl 7→ s = ρ(l), or
on a canonical representative of the equivalence class.
This significantly complicates the model, since we now
havey(t) = ỹ(t, l) = h(g(t)µ̃(t, ρ(l))), and we have no
constraints onρ other than it being a smooth bijection.
Therefore, we choose to representµ implicitly as a set
µ(t) = {x ∈ R2 | χµ(x, t) ≤ 0}, whereχ denotes the
characteristic function of the setµ. While this causes
no problem for the basic model wherėµ = 0, in the
case of “slowly varying” average shape, we have to
define whatw(t) .= µ̇(t) means. Furthermore, in lack
of a correspondences ↔ l, we need to specify how we
compute a discrepancy betweeny(t) and ht(g(t)µ(t)).
For now, we will simply indicate withw(t) the quantity
defined by the equationµ(t + dt) = µ(t)⊕w(t), where
⊕ denotes a composition operation in the setµ(t),
for instancew(t) can be the set-symmetric difference
betweenµ(t + dt) andµ(t).

III. F ILTERING DEFORMING SHAPES

With this formalism, we can now postulate the struc-
ture of the state estimator. We start att = 0 with
an initial point estimate,{µ̂(0), ĝ(0), v̂(0)}. Since the
global reference is arbitrary, we typically chooseĝ(0) =
Id, the group identity. Now, at timet, in lack of any new
measurement, the best estimate of the state att + δ is
obtained by integrating the state equation betweent and
t+δ. We will chooseδ to be the unit of time; integrating
the basic model for constantµ and constant velocity
α = 0 is straightforward, since we have thatµ̂(t+1) =
µ̂(t), v̂(t + 1) = v̂(t) and ĝ(t + 1) = exp(v̂(t))ĝ(t),
where“ ̂ ” is the operator onto the Lie algebra, and we
have omitted the superscript“ ”̂ from v(t) for ease of
notation. Therefore, the prediction step is trivial.

Now, assuming that a new measurementy(t + 1)
becomes available, we are interested in updating the
prediction in a way that guarantees that the estimate of
the state will converge, asymptotically, to the true state.
While in the case of a linear finite-dimensional model

one can derive the optimal estimator directly, here in
general there is no finite-dimensional optimal estimator.
Therefore, we will postulate a structure of the estimator,
in the form of a generic local observer, and then choose
the parameters that guarantee error stability.

Since the deterministic integratoṙg = v̂g is not
imposing any model constraint (other than adherence to
the group actionG), that equation carries no uncertainty:
if v was known exactly andg was known exactly, theṅg
would be givenexactlyby v̂g. Therefore, that equation
carries no model error and the filter can be saturated
along the corresponding components. In practice, we
write that equation in local coordinatesΩ, defined by
g

.= eΩ̂, and approximate the equation to first order as
Ω̇ = (I +Ω̂)v. Consequently, the measurement equation
becomes, neglecting the time indices,y = h(eΩ̂µ).

The goal of the update step is to reduce the “un-
certainty,” i.e. the discrepancy of the model from the
measurements. Since in our case the uncertainty is the
diffeomorphismht, not your usual additive noise, at each
step we have to solve a local optimization in order to
compute the best update for the state. In particular, we
will consider a local update based on an incremental step
in the direction of the gradient of a cost functional that
measures the “energy” of the diffeomorphismht, subject
to the model (1). Specifically, at timet we consider a
causal window of lengthk ≥ 2, and look at the energy

φ(v1, . . . , vk,Ω, µ) .=
t+1∑

τ=t−k+1

∫
E(hτ (x))dx (2)

subject toy(τ) = hτ

(
ev̂1 . . . ev̂keΩ̂(τ−k)µ(τ)

)
.

Now, to quantify the discrepancy between the model
and the measurements, indicated byE(ht) above,
we utilize a discrepancy functioninside the region
gµ ⊂ R2, fin, and a discrepancy functionoutside the
region, fout. These can be as simple as the indicator
functionsfin(x, y) = χy(x)−1, andfout(x, y) = χy(x)
for the case of binary images representing evolving
shapes, or more complex signed-distance scores that
can be generalized to grey-scale images as it has been
shown in [29]. In either case, we write

E(hτ ) =

∫
g(τ)µ(τ)

fin(x, y(τ))dx +
∫

g(τ)µc(τ)

fout(x, y(τ))dx.

(3)
We report the computation of the gradients∇µφ, ∇Ωφ
in the next section. Once these gradients have been
computed numerically, the general form of the update



becomes
µ̂(t + 1) = µ̂(t)⊕ Lµ∇µφ (v̂(t), . . . , v̂(t− k), µ̂(t))
ĝ(t + 1) = ev̂(t)ĝ(t)
v̂(t + 1) = v̂(t) + Lv∇vφ (v̂(t), . . . , v̂(t− k), µ̂(t))

(4)
whereLµ, Lv are tuning parameters whose effects are
discussed in the next section. In the initialization phase,
rather than running one step of the gradient above,
we run several until convergence to steady state ofφ.
Furthermore, depending on the convergence rate ofφ
relative to the dynamics ofµ, it is useful to run several
steps of the gradient, or even to steady state, in the
update equation above.

IV. EXPERIMENTS

In our implementation we have used a numerical
computation of the gradient above to generate an update
for the evolving shape represented implicitly within the
level set framework [23]. In particular,
∇µφ =

k∑
τ=1

|Jg(τ)|(fin(g(τ)x, y(τ))− fout(g(τ)x, y(τ)))N

(5)
whereN is the outward unit normal andJg is the Jaco-
bian of g. The update equation forg, or equivalentlyΩ,
is just the integrator described in the previous section. To
updatev, we update each componentvi independently
using
∇vi

φ =

n∑
τ=1

∫
g−1(τ)y(τ)

〈∂g(τ)x
∂vi

, f{in,out}(g(τ)x, y(τ))Jg∗T (τ)〉ds

(6)
where g∗ denotes the push-forward andT is the unit
tangent vector,

Varying the gainLµ one enforces more or less inertia
by µ to change shape. In Figure 1, a vertical bar five
pixels wide has been removed from the images to create
an occlusion. The occlusion is close in grayscale value
to that of the person being tracked. To see the effect
of varying the gain on the estimation of the contour
as it passes behind the occlusion, we use an image
sequence with a model of motion that is fairly simple
to track (constant velocity) and therefore use a low gain
on the registration(motion) parameters. As the person
passes under the occlusion, the contour will be attracted
to the occlusion and without some state estimator it
would grab onto the occlusion. So in Figure 1, we vary
Lµ = 0.1, 0.65, 0.7. Lµ = 0.65 experimentally turns out
to segment the person the best while avoiding getting
caught up on the occlusion.

Figure 2 has a total occlusion. Here again the model
of motion is certain (constant acceleration) and a low
gain on the motion parameters is used. The gains chosen
for the very uncertain contour areLµ = 0.1, 0.5, 0.8.
The initial gain for the contour is set quite low so
measurements are still a bit emphasized, but then the
model is able to take over and push the tracking of the
person through the total occlusion.Lµ = 0.1 tracks the
person but the contour is very rigid. ForLµ = 0.5, the
person is tracked but the contour gets thrown off by
the similar looking books on the printer and poster on
the wall. The last exampleLµ = 0.8 emphasizes the
measurements too much and loses the person.

In Figure 3, there is only a slight occlusion as the
car passes underneath the light pole. But the occlusion
is very different from the car. The gainL needs to be
chosen a bit higher than the previous examples because
the car is going into a turn. Now there is uncertainty
in the model of motion (constant acceleration) and the
segmentation. A low gain (L=0.1 case) on all of the
motion parameters and the contour would emphasize
the model and would keep the contour tracking in the
original direction the car was moving.L = 0.1, 0.3, 0.7
are looked at in this example. The contour is only
slightly affected as it passes underneath the pole in the
case ofL = 0.3, 0.7.

V. CONCLUSIONS

We have presented a first step in designing a filter for a
dynamical model of an evolving contour. The contour is
represented implicitly as the (infinite-dimensional) locus
of zeros of a given function, that evolves in time under
the action of a group. We estimate both the underlying
state and the group action, from noisy images that can
have significant portions of missing data. Although it
is hard to say anything analytically about the behaviour
of such a filter, we have experimented with challenging
real sequences and we have obtained very encouraging
results.
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