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Abstract

We introduce a provably minimal and stable nonlinear filter for causally estimating the three-dimensional
motion of a scene in real time from a sequence of two-dimensional images. This problem is subject to
fundamental tradeoffs between the the ease in solving the so-called “correspondence problem” and the
robustness of the resulting algorithm. This paper and its companion [7] aim at addressing this funda-
mental tradeoff. We contend that it is possible to integrate visual information over time, hence achieving
a global estimate of 3-D motion, while maintaining the correspondence problem local. Among the obsta-
cles we encounter is the fact that individual points tend to become occluded during motion, while novel
points become visible.

Although there exists no finite-dimensional optimal solution to this problem, it is our goal to provide
algorithms that work in practice as well as in theory. Our contributions towards this end can be summa-
rized into four parts. We first study (1) the conditions that are necessary in order to be able to causally
reconstruct structure and motion. While this problem has been addressed before, we give a novel and
simpler proof that provides geometric insight and an explicit characterization of the ambiguities. We
then (2) prove, for the first time, uniform observability of motion and structure; this result is crucial for
the (3) proof of stability of the algorithm that we propose. In passing, we show (4) how the conditions
we impose on our models are tight: imposing either more or less results in either a biased or an unstable
filter. This paper is concerned with theory. In a companion to the present paper [7] we describe a
complete real-time implementation of the filter, which includes an approach to causally handle occlusions
and experiments on long sequences of real images.

Our approach is related to several previous contributions presented in the literature, although we
compensate for their shortcomings which include handling occlusions and overcoming stability problems
due to the sub-minimality of the models previously employed.

1 Introduction

We are interested in using vision as a sensor for machines to interact with the environment by moving,
tracking, manipulating objects etc. In order to do so, a machine must be able to estimate its three-dimensional
(3-D) motion relative to the scene and — to an extent that depends upon the application — the shape of the
scene.

Inferring the three-dimensional shape of a moving scene from its (two-dimensional) images is one of the
classical problems of Computer Vision, known by the name of “Shape From Motion” (SFM). It is somewhat
of an unfortunate name, since what needs to be inferred from the images, along with scene shape, is (3-D)
motion itself; over the years, research in SFM seems to have crystallized on describing scenes as a collection
of point-features, hardly a meaningful representation of the complexity of the visible world. Perhaps a more
appropriate name for this problem — as someone suggested — would be “(3-D) Motion From (2-D) Motion”



or, for the fond of the acronym, MFm. Ironically, this paper follows the crowd by using a point-wise
representation of the environment. Our apology is that — in this paper — we care more for estimating 3-D
motion than shape; a crude representation of the latter comes as a byproduct. Furthermore, even for such
a simplistic model as a set of point features, reconstructing shape is remarkably difficult. Impossible indeed
—in a sense — as we argue in section 1.2.

SFM (or MFm) is subject to fundamental tradeoffs. As we articulate in section 1.3, when the so-
called “baseline” is long, estimating relative orientation is simple, provided that image-motion is given
(the infamous “correspondence problem”). However, solving the correspondence problem is appallingly
difficult, for it amounts to a global matching problem — all too often solved by hand — which spoils the
possibility of use in real-time control systems. When the images are collected closely in time, on the other
hand, the correspondence problem becomes an easy local variational problem. However, estimating 3-D
motion becomes rather difficult since — on small motions — the noise in the image overwhelms the feeble
information contained in the 2-D motion of the features. This paper and its companion [7] aim at addressing
this fundamental tradeoff. We contend that it is possible to integrate visual information over time, hence
achieving a global estimate of 3-D motion, while maintaining the correspondence problem local. Among the
obstacles we encounter is the fact that individual points tend to become occluded during motion, while novel
points become visible.

While we show how information can be integrated causally over time, we have to tone down our hopes
of being able to do so optimally, for there exists no finite-dimensional optimal solution to this problem.
Therefore, we have to resort to approximations. However, “approximate” does not mean “approximative”: it
is our goal to provide algorithms that work in practice as well as in theory, in the sense of being provably stable
and efficient. This paper aims at setting a small step in this direction. Our contributions can be summarized
into four parts. On the observability of shape and motion, we provide a novel and considerably simpler proof of
the (previously known) global observability, but we also for the first time prove uniform observability. We use
it to characterize the minimal realization of the model, and describe its geometric properties. These results
are crucial for proving the stability of the estimation algorithm that we propose (a nonlinear filter). Finally,
in a companion to the present paper [7], we offer a complete real-time implementation of the algorithms,
which includes an approach to causally handle occlusions.

1.1 A first formalization of the problem

Consider an N-tuple of points in the three-dimensional Euclidean space, represented as a matrix
X=[X" X2 ... XN ]eRr®™V (1)
and let them move under the action of a rigid motion!

{9(m)}rero, € SEQ). 2)

Associated to each motion g(t) there is a velocity? 9(t) € se(3). Under such velocity, motion evolves according
to3
g9t +1) = exp(0(t))g(t)  0(t) € se(3). (4)

1SE(3) stands for the Special Euclidean group of rigid motions in R3, which is represented by a translation vector T and
a rotation matrix R : g = {T, R}. Rotation matrices are orthogonal with unit determinant and form a group, called Special
Orthogonal group: R € SO(3) = {R | RTR = RRT = I}. The Euclidean group acts on the coordinates of each point via
g()X? = R(H)X! + T(2).

2Spatial velocity is represented by a vector of linear velocity V and a skew-symmetric matrix @ of rotational velocity. Skew-
symmetric 3 X 3 matrices are denoted by so(3) = {A € R3*3 | AT = —A}. They are isomorphic to three-dimensional vectors

via the “hat” operator, which represents the cross product: X¢XJ = X¢ x XJ. In fact, for each three-dimensional vector
a = [a1, a2, a3]T there is a unique skew-symmetric matrix a given by

~ 0 —a3  ag
a= a3 0 —ay |- (3)
—ay  aj 0

Vice-versa, every skew-symmetric 3 X 3 matrix has this form and can thus be represented by the vector a.
3The exponential can be computed in closed form using Rodrigues’ formula (21).



We assume that - to an extent discussed in later sections - the correspondence problem is solved, that is we
know which point corresponds to which in different projections (views). Equivalently, we assume that we
can measure the (noisy) projection?

yi(t) =7 (9t)X") +n'(t) eR* Vi=1...N (5)

where we know the correspondence y! <+ X?. Finally, by organizing the time-evolution of the configuration
of points and their motion, we end up with a discrete-time, non-linear dynamical system:

X(t+1) = X(t) X(0) = Xo € R*V
g(t +1) = exp(v(t))g(?) 9(0) = go € SE(3) (6)
v(t+1) =v(t) + a(t) v(0) = vy € se(3) = R®

yi(t) =7 ()X (1)) +n’(t) n'(t) ~ N(0,%,)

where ~ N (M,S) indicates that a vector is distributed normally with mean M and covariance S. In the
above system, a is the relative acceleration between the viewer and the scene. If some prior modeling
information is available (for instance when the camera is mounted on a vehicle or on a robot arm), this
is the place to use it. Otherwise a statistical model can be employed. In particular, one way to represent
analytically the fact that no information whatsoever is available is by modeling « as a white noise process.
This is what we do in this paper®. In principle one would like - at least for this simplified formalization of
Structure From Motion - to find the “best” solution, which corresponds to the optimal estimate (in some
sense) of the state of the above system {X, g,v} given a sequence output measurements (correspondences)
over an interval of time. We call an algorithm that delivers the optimal estimate of the state at time ¢
causally (i.e. based upon measurements up to time t) the optimal filter.

1.2 Critique and extensions

There are numerous reasons why the above formalization is altogether simplistic from the point of view of
the vision scientist, chief the fact that the position of NV points in space is hardly a satisfactory representation
of the shape of a scene. Furthermore, we have assumed that the scene is a single rigid object (or that it
has been segmented into rigid objects and we restrict the attention to one of them), and that we know the
correspondence between points; assumptions that are all but realistic in any scene of practical interest.

However, taking the stance of the mathematician, one would like to find the richest instance of the
problem that can be solved rigorously. Unfortunately, even for the simple case just outlined, the “right”
solution does not exist . Therefore, before proceeding onto formulations of the problem that capture richer
visual phenomena, we feel the need to say what can be said rigorously at least on this simple instance.

From the stance of the engineer, we would like to offer an analysis that results in robust and efficient
algorithms with guaranteed performance in their domain, that can be implemented in real-time and inserted
into the sensing-action loop of autonomous control systems. We regard this as a useful contribution to the
community, even though the system we propose will not capture the complexity of the motion of a silk gown
or that of the foliage of a tree.

In passing, we remark that some of the ideas set forth in this paper can be extended to a representation
of the scene where objects are surfaces chosen within a parametric class of models, and to higher-order
deterministic and stochastic models for motion, as well as to different projection models, including partially
calibrated ones [7].

T
X X2 ] . This choice is not crucial and the

4We take as projection model an ideal pinhole, so that y = 7(X) = [ X X
discussion can be easily extended to other projection models (e.g. spherical, orthographic, para-perspective, etc.) including
partially unknown ones (self-calibration). We do not distinguish between y and its projective coordinate (with a 1 appended),
so that we can write X = y X3.

5We wish to emphasize that this choice is not crucial towards the conclusions reached in this paper. Any other model would
do, as long as the overall system is observable.

8In the presence of noise, the state of the model (6) can be represented as a stochastic process. In our case such a process
evolves on a differentiable manifold (the product of the configuration space and the Lie group of rigid motions). The evolution
of the state induces an evolution of its conditional density, which is represented by a partial differential operator known as
Fokker-Planck operator. It can be shown that — under a wide range of conditions that include model (6)— there do not exist
densities that are invariant under such operator, and therefore no finite-dimensional solution to the optimal filtering problem
can be found (see [8]).



1.3 Tradeoffs in Structure From Motion

The distance between the centers of projection of two views is commonly referred to as “baseline” (or
“parallax”) between the two images. As we will see in section 2, in order to be able to recover the structure
of the scene it is necessary that the baseline be non-zero. In the presence of noise, the larger the parallax
the higher the “signal-to-noise ratio”. For a relatively large baseline - such as that of sequences of snapshots
taken from largely different viewpoints - estimating structure and motion is easy. However, solving the
correspondence problem is difficult, if not impossible, without expert intervention of a human operator.

On the other hand, for a small baseline - such as the inter-frame parallax of sequences taken by a moving
camera with a fast sampling rate (30-60 Hz) - the correspondence problem is simple to solve, at least locally
in space and time (more on this later). However, estimating structure and motion is quite difficult since the
effects of noise are overwhelming (up to 1000% of the average signal in sequences commonly encountered
in real life) 7. A meaningful scheme for time integration of visual information must result in an effective
increase of the baseline, while using local information from each frame.

No matter how one chooses to increase the baseline in order to bypass the tradeoff with correspondence,
however, one inevitably runs into deeper problems, namely the fact that individual feature points can appear
and disappear due to occlusions, or to changes in their appearance due to specularities, changes in the light
distribution, shadows etc. We discuss this issue in the companion paper [7].

1.4 Relation to previous work and organization of the paper

Since the optimal solution to the filtering problem for the model (6) does not exist, one has to resort to
approximations. There are in the literature countless ways to approximate the optimal filter, including
numerical integration, Monte Carlo methods, and the use of parametric densities (splines, sums of Gaussians
etc.) (see for instance [21, 5, 16, 30, 2] and references therein). Each of these techniques, however, has
shortcomings since they are for general purpose and therefore do not exploit the specifics of our problem.
In particular, our models can reach a very high dimension for the state (in the order of several hundreds),
which makes the use of numerical integration and Monte Carlo methods prohibitive for real-time processing.
Furthermore, seeking a representation of the whole conditional density of the state may be an overkill: for
most practical purpose one is content with a point-estimate (ideally the maximum likelihood) and a measure
of the uncertainty in the estimate. For this reason, we concentrate on wide-sense estimation, by designing
an approximate filter for the mode of the conditional density of the state and its dispersion about the mode
8

We are interested in estimating motion so that we can use the estimates to accomplish spatial control
tasks such as moving, tracking, grasping etc. In order to do so, the estimates must be provided in real-time
and causally, while we can rely on the fact that images are taken at adjacent instants in time and the relative
motion between the scene and the viewer is somewhat smooth (rather than having isolated “snapshots”).
Therefore, we do not compare our algorithms with batch multi-frame approaches for Structure From Motion
(such as those based upon multi-linear geometry). If one can afford the time for processing sequences of
images off-line, of course a batch approach that optimizes simultaneously on all frames will perform better!?

Our work falls within the category of causal motion and structure estimation (also referred to as “re-
cursive”, or “Kalman-filter based” methods), that has a long history. To our knowledge, Dickmanns and
Gennery were the first to address the causal estimation of motion [12, 9], confined to structured envi-
ronments (objects with known shape in the case of Gennery, freeways with structured shape in the case

TThere are many heuristics to bypass this tradeoff. For instance, one could track individual feature-points from frame to
frame in a sequence, but start processing them only when the baseline is “large enough” (thereby discarding information from
intermediate frames). A more principled way to proceed is to increase the baseline by integrating visual information over time.
Notice that time-integration does not mean time-averaging: if the noise is such that estimation between adjacent frames is
spoiled (the residual cost being minimized is flat), their average is meaningless.

81t can be argued that a wide-sense approach is sensible only if the posterior density is unimodal. We have been unable to
prove any general properties on the posterior; although we know that it is possible, in principle, for it to be multi-modal, in all
the experiments performed we have never experienced a splitting of the mode.

90ne may argue that batch approaches are now fast enough that they can be used for real-time processing. Our take on
this issue is exposed in the next section, where we argue that speed is not the problem; robustness is, especially when images
are taken at frame-rate from a moving camera and therefore the baseline is short.



of Dickmanns). The past fifteen years have seen a proliferation of recursive schemes to estimate Eu-
clidean structure from known motion [20], motion from known structure [6, 25], or both simultaneously
[22, 33, 11, 31, 26, 10, 15, 37, 14, 32, 35, 34, 17, 28, 19, 1, 4, 24, 36, 18] just to cite a few. The first attempts
to prove stability of the schemes proposed are not until recent [23]. However, few of the schemes cited
addresses occlusions, which make them prone to the tradeoffs described in section 1.3 and therefore hardly
usable in realistic scenes where occlusions are the norm. The first attempts to handle occlusions in a causal
scheme!® came only a few years ago: McLauchlan [22] proposed a filter with variable state, that however
requires a batch initialization, while Soatto and Perona [29] proposed several schemes in which the problem
of occlusions was bypassed by eliminating structure from the model. Their scheme, however, had the scale
factor tied to motion, rather than to shape, and therefore could not exploit the invariance of shape in order to
achieve a large effective baseline. Our approach is similar in spirit to the work of Azarbayejani and Pentland
[4], extended to handle occlusions. In addition, the model in [4] is sub-minimal which, as we explain in
section 4.2, results in an unstable filter. Furthermore, it gives “infinite weight” to the measurements at the
initial instant. We correct all the above issues here.

The first part of this study is concerned with analysis. We first study the conditions that are necessary
in order to be able to causally reconstruct structure and motion (section 2). While the observability of
structure from motion has been addressed before, we give a novel and simpler proof that provides geometric
insight and an explicit characterization of the ambiguities. In section 3 we prove uniform observability for
the first time; this result is crucial for the proof of stability of the algorithm that we propose in section 4.1.
In passing, we show how the conditions we impose on our models are tight: imposing either more or less
results in either a biased or an unstable filter (section 4.2).

The second part, which we present in a companion paper [7] is concerned with the implementation of a
system for functioning in real time on real scenes. This paper shares general motivations with its companion
[7], so that parts of the introduction are common to the two.

2 Observability

To what extent can the 3-D shape and motion of a scene be reconstructed causally from measurements of the
motion of its projection onto the sensor? This is the subject of this section, which we start by establishing
some notation that will be used throughout the rest of the paper.

2.1 Preliminaries

Let g € SE(3) indicate an element of the Euclidean group of rigid motions, represented by a translation
vector T € R? and a rotation matrix R € SO(3), and let a # 0 be a scalar. The similarity group, which we
indicate by g, € SFE(3) x Ry is the composition of a rigid motion and a scaling, which acts on points in R?
as follows: g,(X) = aRX + oT. We also define an action of g, on SE(3) as go(g') = {aRT' + oT, RR'}
and an action on se(3) as ? go(v) = {aV,@}. The similarity group, acting on an N-tuple of points in R,
generates an equivalence class:

X]={Y e R*" |3 g0 | Y = guX} (7)

two configurations of points X and Y € R**Y are equivalent if there exists a similarity transformation gq
that brings one onto the other: Y = g,X. Such equivalence class in (7) is called a fiber, and the collection
of all fibers is called a fiber bundle, or homogeneous space [13]. Therefore, the similarity group organizes the
space of N-tuples into a fiber bundle, which we call the state-space bundle: given a point X in RV it
belongs to one and only one fiber. From any given point it is possible to move either along the fiber (via
the similarity group) or across fibers. One element of each fiber is sufficient to represent it, since all other
elements are just transformed versions of it via the similarity group. In order to obtain a representation of
the whole bundle, however, we need a consistent way of choosing a representative for each fiber. This is
called a base of the fiber bundle (see [13]).

10There are several natural ways of handling missing data in a batch approach: since they do not extend to causal processing,
we do not review them here.




Consider now a discrete-time nonlinear dynamical system of the form

{£(t+1) = f(&(®) &) = &o (8)
y(t) = h(£(2))

and let y(¢; to, &) indicate the output of the system at time ¢, starting from the initial condition & at time .
In the next section we want to characterize the states £ that can be “reconstructed” from the measurements
y. Such a characterization depends upon the structure of the system f, h and not on the measurement noise,
which is therefore assumed to be absent for the purpose of analysis in this section.

Definition 1 Consider a system in the form (8) and a point in the state-space &. We say that & is
indistinguishable from & if y(t;t0,&0) = y(t;to, &) VY t,t0. We indicate with (&) the set of initial
conditions that are indistinguishable from &.

Definition 2 We say that the system (8) is observable up to a (group) transformation ¢ if Z(&) = [éo] =
{& 13| & =v(%)}-

Clearly, from measurements of the output y(¢) over any period of time, it is possible to recover at most the
equivalence class (fiber) where the initial condition belongs, that is Z(&y), but not & itself. The only case
when this is possible is when the system is observable up to the identity transformation. In this case we
have that Z(&) = {0} and we say that the system is observable.

For a generic linear time-varying system of the form

{ §(t+1) = F1)Et)  &to) =& ©)
y(t) = H®)E®)

we define the k-observability Grammian as My(t) = Z:Zf STOHT(t)H(t)®;(t) Vi > t where () =1
and ®;(t) = F(i — 1)...F(t). The following definition will come handy in section 4.1:

Definition 3 We say that the system (9) is uniformly observable if there exist real numbers my >0, ma > 0
and an integer k > 0 such that miI < My(t) < moI V ¢.

2.2 Structure from motion is observable up to a similarity

The following theorem revisits the well-known fact that, under constant velocity, structure and motion are
(causally) observable up to a (global) similarity transformation.

Proposition 1 The model (6) where the points X are in general position is observable up to a similarity
transformation of X provided that Vo # 0. In particular, the set of initial conditions that are indistinguishable

from {Xo, go,vo}, where go = {To, Ro} and e* = {Vy,Up}, is given by {RXoa + T, §o, 0}, where o =
{Toa — RoRTTa, RoRT} and e¥ = {Voo, Up} for an arbitrary a and T, R.
Proof: Consider two initial conditions {X1, g1,v1} and {X2, g2,v2}. For them to be indistinguishable we must have

y(t) = 7(g1($)X1(t)) = 7(g2(t)X2(t)) V t > 0. In particular, at time t = 0 this is equivalent to the existence
of a diagonal matriz of scalings, A(1) such that g1(0)X1(0) = (92(0)X2) - A(1), where the operator - performs the

scaling according to (gX)- A= RXA+ TA. Under the assumption of constant velocity, we have that g(t) = e g(0),
and therefore the group action g only appears at the initial time. Consequently, we drop the time inder and write
simply g1 and g2 as points in SE(3). At the generic time instant t, the indistinguishability condition can therefore be

written as e g1 X1 = (e"2g2Xs) - A(t + 1). Therefore, given Xa, g2, v, in order to find the initial conditions that
are indistinguishable from it, we need to find X1, g1,v1 and A(k),k > 1 such that, after some substitutions, we have

91Xy = (92X2) - A(1)
evle(k—l)v292x2 = (e”Ze(k_l)ngXg) CAk+1) k> 1. (10)
Making the representation of SE(3) ezplicit, we write the above conditions as

RiX: + T :7(R2X2 + T>)A(1) ~ (11)
U1 X A(k) + Vi = U X3 A+ 1) + V2 A(k+ 1)



where we have defined Xy iﬁe(k_l)”ZngQ which, by the assumption of general position, is of full rank 3, and V
denotes the rank-one matriz V =V Ix, where In is the N-dimensional vector of ones. We can rewrite the second of

the equations above in a more enlightening way as follows:
XiA(R)A Nk +1) — U U Xy, = Ul (Vo A(k+1) = Vi)A (K +1). (12)

The 3 x N matriz on the right hand-side has rank at most 2, while the left hand-side has rank 3, following the
general-position conditions, unless A(k)A™ (k+1) = I and U7 Uy = I, in which case it is identically zero. Therefore,
both terms in the above equations must be identically zero. From UL Us = I we conclude that Uy = Us, while from
AR)A Yk +1) = T we conclude that A(k) is constant. However, the right hand-side imposes that VoA = Vi, or in
vector form Vea” = Vil where A = diag{a}, which implies that A = al, i.e. a multiple of the identity. Now, going
back to the first equation in (11), we conclude that Ry = R2RY, for any RT € SO(3), X1 = (RXo + T)a for any
T € R®, and finally Ty = (T> — R1RT'1~“)a, which concludes the proof.

Remark 1 The relevance of the above proposition for the practical estimation of Shape from Motion (where
velocity is not necessarily constant) is that one can solve the problem using the above model only when velocity
varies slowly compared to the sampling frequency. If, however, some information on the dynamics of the
acceleration becomes available (as for instance if the camera is mounted on a support with some inertia),
then the restriction on velocity can be lifted. This framework, however, will not hold if the data y(t) are
snapshots of a scene taken from sparse viewpoints.

The following theorem states that it is possible to make the model observable by fixing the direction of three
points and one depth. When we interpret the state-space as a fiber bundle under the action of the similarity
group, fixating the direction of three points and one depth identifies a base of the bundle, that is a point in
the similarity group. Without loss of generality (i.e. modulo a re-ordering of the states) we will assume the
indices of such three points to be 1, 2 and 3. We consider a point X as parameterized by its direction y and
depth p, so that X = yp.

Proposition 2 Given the direction of three non-coplanar points, y*,y?,y> and the scale of one point, p' >
0, and given vectors ¢*, i =1... N, the set of motions g = {T, R} € SE(3) and scales a € R such that

aRy'p'+aT =¢' Vi=1...N>3 (13)
has measure zero.
Proof: Suppose that the statement holds for N = 3, then it holds for any N > 3, as any additional equation of the

form ¢* = aRyipi +aT 1s linear in the variable Xt = yip", and therefore can be solved uniquely. Since X3 = pi, the

latter is uniquely determined, and so is y* = ):—:. Therefore, we only need to prove the statement for N = 3:

#* = aRy’p® + oT (14)

{ ¢' = aRy'p' +aT
¢® = aRy*p® + aT.

Solve the first equation for oT,

ol =¢' —aRy'p' #£0 (15)
and substitute into the second and third equation to get
{ ¢’ =9 =aR(y’p’ —y'p) (16)
¢ —¢ =aR(y"p’ —y p).

The scale a > 0 can be solved for as a function of the unknown scales p* and p®

o= l6* — o'l _ _llg* — o'l
ly2p? —yiptl|  lly3p® — yiptl

(17)

(note that these expressions are always legitimate as a consequence of the non-coplanarity assumption). After substi-
tuting o in equations (16), we get

62— gl -R 2 2 1.1
MeZ—¢tll = ““llyZp2—ylpl 18
#3-¢> _ p ¥3p°-ylp (18)
63— = “lly3p3—yTpTll"



In the above equations, the only unknowns are R, p* and p®. Note that, while on the left hand-side there are two fized
unit-norm vectors, on the right hand-side there are unit-norm vectors parameterized by p® and p* respectively. In
particular, the right hand-side of the first equation in (18) is a vector on the unit circle of the plane spanned by y?
and y*, while the right hand-side of the second equation is a vector on the unit circle of the plane w2 spanned by y*
and y3. By the assumption of non-coplanarity, these two planes do not coincide. We write the above equation in a
more compact form as
1
{ o (19)

¢u2 = Rup3-

Now R must preserve the angle between ¢, and ¢.>, which we indicate as ¢, ¢.,%, and therefore Kp2 and p,2 must

be chosen accordingly. If ¢, ¢,> > m — iz, no such choice is possible. Otherwise, there exists a one-dimensional
interval set of p*, p> for which one can find a rotation R that preserves the angle. However, R must also preserve the
cross product, so that we have

¢u' x ¢ = (Ruy2) X Ruys = Rpyz x (R"Rpys) = Rz X py3) (20)

(note that the norm of the two cross products is the same as a consequence of the conservation of the inner product),
and therefore p? and p® are determined uniquely; as a consequence, so is R, which concludes the proof.

3 Realization

In order to design a finite-dimensional approximation to the optimal filter, we need a minimal realization of
(6). How to obtain it is the subject of this section.

3.1 Local coordinates

Our first step consists in characterizing the local-coordinate representation of the model (6). To this end,
we represent SO(3) locally in canonical exponential coordinates: let 2 be a three-dimensional real vector
(Q € R?); ﬁ specifies the direction of rotation and ||?|| specifies the angle of rotation in radians. Then a

rotation matrix can be represented by Q) € s0(3) such that R = exp(Q ) € SO(3). Rodrigues’ formula is a
convenient way to compute the exponential:

02

[

o

exp(Q) = I+t sin (||2]) + (1 = cos ([[2[])) - (21)

)

The three-dimensional coordinate X' is represented by its projection onto the image plane y* and its depth
pt, so that y* = 7(X?) = [ f §’1’

3 3
the uncertainty in the measured directions y (low) from the uncertainty in depth p (.high). In what follows
we will not make a distinction between the homogeneous three-dimensional vector y* € R*/IR (with a 1 as
the third element) and the corresponding two-dimensional vector y* € R?, since this will be clear from the
context. The model (6) in local coordinates is therefore

p' = X%. Such a representation has the advantage of decomposing

[yo(t+1) =y5(t) i=1...N ¥6(0) =¥
pl(t+1) = p'(t) i=1...N p'(0) = po
T(t+1) = exp(@(t)T(t) + ( R T(0) = To
1 Q(t +1) = Logsogs) (exp(@()) exp(9(1))) Q(0) = 0 (22)
V(E+1)=V(t) +av(t) V(0) =W
w(t+1) =w(t) + au(t) w(0) = wo
|yt =n (exp(n(t))yg(t)pz(t) + T(t)) +nit)  i=1...N.

The notation Logsos)(R) stands for 2 such that R = ea and is computed by inverting Rodrigues’ formula.



3.2 Minimal realization

In linear time-invariant systems one can decompose the state-space into an observable subspace and its
(unobservable) complement (the so-called Kalman decomposition). In the case of our system, which is
nonlinear and observable up to a group transformation, we can exploit the bundle structure of the state-
space to realize a similar concept of decomposition: each base of the fiber bundle is observable, while
individual fibers are not. Therefore, in order to restrict our attention to the observable component of the
system, we only need to choose a base of the fiber bundle, that is a particular (representative) point on each
fiber'!. Proposition 2 suggests a way to render the model (22) observable by eliminating the states that fix
the unobservable subspace.

Corollary 1 The model

(yi(t+1) =yi(t) i=4...N y6(0) = v
p(t+1)—p() i=2...N p'(0) = py
T(t+1) = exp(@(t)T(t) + V(t R T0)="To
{ Q(t +1) = Logsos) (exp(&(t)) exp(Q(2))) 2(0) = Qo (23)
V(it+1)=V(t)+av(t) V(0) =W
wt+1)=w(t )/—\i— oy, (t) w(0) = wo
| ¥i(0) =7 (exp@)ys (0 () + () i) i=1..N

which is obtained by eliminating y',y%,y> and p' from the state of the model (22), is observable.

The model (23) is essentially the one we are going to use in the companion paper [7] to design a nonlinear
filter.

3.3 Linearization and uniform observability of the minimal realization
Proposition 3 Let £ = [pt y17, ..., TT, T, VT, wT|T and F(t) = %(;), H(t) = 8’5—25) denote the
linearization of the state and measurement equation in (23) respectively, and let N > 5: Then the linearized
system is uniformly observable for all 0 < p* < 0o, Vi=1...N.

Proof: Let k = 2; that there exists an ma < 0o such that Ma(t) < mal follows from the fact that F(t) and H(t) are
bounded for all t, as can be easily verified. We now want to guarantee that Ma(t) is strictly positive definite for all t.
To this end, it is sufficient to show that the matriz

N H(t)
Ua(t) = [ H(t+ )F(t) ] (24)

has full generic rank equal to 3N + 7 for all values of t, as can be verified using a symbolic manipulation package
whenever N > 5.

4 Estimation of structure and motion

Following the derivation in previous sections, the problem of estimating the motion, velocity and point-wise
structure of the scene can be converted into the problem of estimating the state of the model (23). We propose
to solve the task using a nonlinear filter, properly designed to account for the observability properties of the
model. The implementation, which we report in detail in the companion paper [7], results in a sub-optimal

1 Essentially we need to fix one particular element of the similarity group, i.e. a rotation, a translation and a scale. There
are several ways of doing that. For instance, we can choose to fix the initial position and orientation of the camera relative to
the object (pose), and the overall scaling of the points (scale), e.g. T(0) =0, R(0) =1, ||X|| =1 or p* =1 forsomei € 1...N,
which corresponds to the object reference frame and the camera frame being the same at the initial time instant. Under this
choice, the evolution of 7" and R becomes a deterministic integrator with no uncertainty, so the corresponding states can be
removed from the model altogether.

However, velocity is not constant, while the coordinates of the points X are; it is therefore preferable for the sake of filtering
to choose the base of the fiber by fixing quantities related to X rather than to T, R.



filter, as is well known 6. However, it is important to guarantee that the estimation error, while different

from zero, remains bounded. We do so, for the first time, in the next section 4.1. To streamline the notation,
we represent the model (23) as

{ Et+1) = fE®) +w(t)  w(t) ~ N(0,Zu, (1), (25)
y(t) = h(€(t) +n(t)  n(t) ~ N(0,En, (1))

The filter is described by a difference equation for the state & (t). We call the estimation error

E(t) = &(t) — €(¢) (26)

and its variance at time ¢ P(t). The initial conditions for the estimator are
£0) =& 27
{ P(0) =Py >0 27

and its evolution is governed by

{ £t +1) = fE@) + KDy(t + 1) — h(E®))] (28)
P(t+1) =R (P(t), F(t), H(t), Zn, Lu)

where R denotes the usual Riccati equation which uses the linearization of the model {F, H} computed at
the current estimate of the state, as described in [16] (see also the companion paper [7]). K is the Kalman
gain.

Note that we call £,,, X, the variance of the measurement and model noises, and ¥,,, ¥,, the tuning
parameters that appear in the Riccati equation. The latter are free for the designer to choose, as described
in the companion paper [7].

4.1 Stability

The aim of this section is to prove that the estimation error generated by the filter just described is bounded.
In order to do so, we need a few definitions.

Definition 4 A stochastic process £(t) is said to be exponentially bounded in mean-square (or MS-bounded)
if there are real numbers 1, v >0 and 0 < 8 < 1 such that E||£(t)||> < n[|£(0)||*6" + v for all t > 0. £(t) is
said do be bounded with probability one (or bounded WP1) if P[sup;s, [|£(t)]| < o] = 1.

Definition 5 The filter (25) is said to be stable if there exist positive real numbers € and 0 such that
1E0)]| <€ Bn(t) <OI, Ty(t) <6 = £(t) is bounded. Depending on whether £(t) is bounded in mean
square or with probability one, we say that the filter is “MS-stable” or “stable WP1”.

We are now ready to state the core proposition of this section

Proposition 4 Let 0 < p! <ocoVi=1...N and N > 5 in the model (23). Then the filter based on such a
model is MS-stable and stable WP1.

First we need a result that follows directly from corollary 5.2 of [3]:

Lemma 1 In the filter based on the model (23), let Py > 0. Then there exist positive real numbers p; and
pa2 such that
pI <Pt)<pI VYt>0. (29)

Proof: The proof follows from corollary 5.2 of [3], using proposition 3 on the uniform observability of the linearization

of (23).
Proof of proposition 4: The proposition follows immediately from theorem 8.1 in [27], making use in the as-
sumptions of the boundedness of F(t), H(t), lemma 1 and the differentiability of f and g when 0 < p* < oo V 3.
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4.2 Instability of non-minimal models

Most recursive schemes for causally reconstructing structure and motion available in the literature represent
structure using only one state per point (either its depth in an inertial frame, or its inverse, or other variations
on the theme). This corresponds to reducing the state of the model (23), with the states y} substituted for
the measurements y*(0), which causes the model noise n(t) to be non-zero-mean'?. When the zero-mean
assumption implicit in the use of the Kalman filter is violated, the filter diverges!®. In this case we say that
the model is sub-minimal.

On the other hand, when the model is non-minimal — such is the case when we do not force it to evolve
on a base of the state-space bundle — the filter is free to wonder on the non-observable space (i.e. along the
fibers of the state-space bundle), therefore causing the explosion of the variance of the estimation error along
the components of the state parallel to the fibers'4.

Therefore, the minimal realization (23) enforces no more and no less than the conditions that are required
for designing a stable filter (hence the name minimal).

5 Conclusions

The causal estimation of three-dimensional structure and motion can be posed as a nonlinear filtering prob-
lem. In this paper we have analyzed it by providing a characterization of global observability, uniform
observability, minimal realization and stability of the filter.

As described in a companion paper [7], the filter has been implemented on a Personal Computer, and
the implementation has been made available to the public.

The next logical steps are in two directions. On one hand to explore more meaningful representations
of the environment as a collection of surfaces with certain shape emitting a certain energy distribution. On
the other hand, a theoretically sound treatment of nonlinear filtering for these problem involves estimation
on Riemannian manifolds and homogeneous spaces. Both are open and challenging problems in need of
meaningful solutions.
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