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Abstract

We pose the problem of recognizing different types of
human gait in the space of dynamical systems where each
gait is represented. Established techniques are employed to
track a kinematic model of a human body in motion, and the
trajectories of the parameters are used to learn a represen-
tation of a dynamical system, which defines a gait. Various
types of distance between models are then computed. These
computations are non trivial due to the fact that, even for
the case of linear systems, the space of canonical realiza-
tions is not linear.

1. Introduction

How do we recognize a person walking from one jump-
ing, running, hopping or dancing, independent on the per-
son and her pose? In this paper we address this problem
in three stages by first tracking a parametric skeletal model
of the person moving, then learning a model that captures
the dynamics of the model parameters, and finally posing
the recognition problem in the space of dynamical systems
learned from data. The first stage renders the system in-
variant to photometric factors (e.g. illumination, clothing
etc.), while the second stage guarantees invariance to geo-
metric factors such as the distance and pose of the camera,
the length of the person’s limbs etc. In this context, each
gait is represented by a dynamical system identified from a
time series.

While we borrow the first stage straight from the liter-
ature of computer vision, subsequent stages require some
attention. Learning a dynamical model of the joint trajec-
tories must be done in a canonical way to guarantee that a
particular dataset corresponds to one and only one model.
This can be done following well established results in the

literature of system identification, at least for the simplest
case of linear systems. Performing recognition in the space
of models entails computing distances and probability dis-
tributions on manifolds, since the set of dynamical models
in canonical form is not a linear space (even if the model
itself is linear!) and therefore computing distances naively
can lead one to conclude that very similar models are dra-
matically different. Measuring distances between dynam-
ical models is an open problem even for the case of lin-
ear multiple-input, multiple-output (MIMO) systems. En-
dowing the space of models with a full-fledged probabilistic
structure is even more of a challenge.

Our starting point is a collection of trajectories of joint
positions and/or joint angles for an articulated body. We ex-
tract those from images using an algorithm similar to that
of Bregler and Malik [6], manually initialized. Although
manual initialization is not our ideal choice, performing au-
tomatic initialization is a research program in its own right,
and is therefore not addressed in this paper. The empha-
sis of our work is not tracking. Therefore, we consider the
output of any tracking module as the input of our algorithm
that estimates a dynamical model of the geometric feature
trajectories.

The literature on modeling and recognition of human
motion is sizeable and growing (see [10] for a survey). A
common approach consists of extracting low-level features
by local spatio-temporal filtering on the images and using
hidden Markov models (HMMs) on the collection of se-
quences of points thus obtained for recognition and clas-
sification tasks [24, 25]. In [25], parametric HMMs are in-
troduced for recognizing gestures that exhibit dependence
on a set of parameters, and in [5] coupled HMMs are used
for modeling interactions of two mobile parts. In [17, 1]
Bayesian Networks are used for recognition tasks. Local
representation of motion based on optical flow has been ex-
ploited in [14, 15], and view-based methods are proposed in



[4, 2, 12]. Other approaches are based on principal compo-
nent analysis [28], parameterization of the motion on joint
angles [7] and snake fitting [19]. Estimation of motion from
stereo [27] and multiple view systems [11] has also been
investigated. In [6] a mixed-state statistical model for the
representation of motion has been been proposed. In this
switching linear dynamic model a stochastic finite-state au-
tomaton at the highest level switches between local linear
Gaussian models. Estimation and recognition is performed
with expectation-maximization (EM) approaches using par-
ticle filters [20, 3] or structured variational inference tech-
niques [23].

Our models are discrete-time, continuous-state dynami-
cal systems, and the action is coded in the dynamical model
(i.e. the system parameters). We use closed-form algo-
rithms [22] rather than EM as customary, to perform learn-
ing. Since the space of model is non-linear, computing a
distance between models is non trivial. We draw on the
literature of system identification and signal processing,
where the problem is an active area of research [8, 18]. We
propose different methods that, on the admittedly limited
dataset we have tried them on, give encouraging results.

2. Preliminaries

2.1. From images to skeletons

In this section we briefly describe the algorithm we use
to extract joint trajectories from pictorial image sequences.
The emphasis of this work is on the recognition of gaits.
Therefore, any algorithm for the estimation of joint trajec-
tory – reviewed in Section 1 – can be used as a front-end.

In particular, we have implemented a variant of [6],
where a human skeleton is represented as a kinematic chain
supporting ellipsoidal texture patches. The parameters of
the chain are set by hand by clicking on the desired joints in
the first image of a sequence. Each link is then represented
by an ellipse whose major axis equals the length of the link
and whose minor axis is also set by hand. At each tracking
step, an EM iteration is performed where the joint param-
eters are estimated for a given support region, followed by
an update of the support region based on a local measure of
similarity among corresponding regions in adjacent images.

The result of this algorithm – or of any other similar al-
gorithm – is a sequence of joint positions, which we call
����� � � � � � � � . These are used to compute a dynamical
model of the joint evolution, as we describe next.

2.2. From joint angle trajectories to dynamical
models

We start from the assumption that a sequence of joint
angle trajectories ����� � � � � � � � is a realization from a

second-order stationary stochastic process. This means that
the joint statistics between two instants is shift-invariant.
This is a severely restrictive assumption that is only mean-
ingful for stationary gaits but not for “transient” actions.

It is well known that a positive definite covariance se-
quence with rational spectrum corresponds to an equiva-
lence class of second-order stationary processes [16]. It is
then possible to choose as a representative of each class a
Gauss-Markov model – that is the output of a linear dynam-
ical system driven by white, zero-mean Gaussian noise –
with the given covariance. In other words, we can assume
that there exists a positive integer �, a process ������ (the
“state”) with initial condition �� � �

� � � ��� � � and

a symmetric positive semi-definite matrix

�
	 



� �

�
�

� such that ������ is the output of the following Gauss-
Markov “ARMA” model1:
�
���� �� � ����� � ��� ��� � � ��� 	�� ���� � ��
���� � ����� � ����� ���� � � ��� ��

(1)
for some matrices � � ���� and � � ���� .

The first observation concerning the model (1) is that the
choice of matrices ����	��� 
 is not unique. The first
source of non-uniqueness has to do with the choice of ba-
sis for the state space: one can substitute � with ��� ��,
� with ����, 	 with �	� � , 
 with �
, and choose the
initial condition ���, where � � ����� is any stable �	�
matrix and obtain the same output covariance sequence.
The second source of non-uniqueness has to do with issues
in spectral factorization that are beyond the scope of this pa-
per [16]. Suffices for our purpose to say that one can trans-
form the model (1) into a particular form – the so-called
“innovation representation” – that is unique. Such a repre-
sentation is canonical in the sense that it does not depend on
the choice of the state space (because it has been fixed).

The problem of going from data to models then be for-
mulated as follows: given measurements of a sample path of
the process: ����� � � � � ����� � �� �, estimate ��� ��� ��� �	,
a canonical realization of the process ������. Ideally, we
would want the maximum likelihood solution from the fi-
nite sample, that is the argument of

	
�
�������

������� � � � � ����
����	���� (2)

The closed-form asymptotically optimal solution to this
problem has been derived in [22]. From this point on, there-
fore, we will assume that we have available – for each sam-
ple sequence – a model in the form �����	���. While the
state transition� and the output transition� are an intrinsic
characteristic of the model, the input and output noise co-
variances 	 and � are not significant for the purpose of

1ARMA stands for autoregressive moving average.



recognition (we want to be able to recognize trajectories
measured up to different levels of noise as the same). There-
fore, from this point on we will concentrate our attention on
the matrices � and � that describe a gait.

2.3 Distance between models

A common distance that is widely accepted in system
identification for comparing ARMA models is based on the
so-called subspace angles [22]. Given a model � specified
by the pair ����� as above, one may define the associated
infinite observability matrix,

���� � ��� ���� ����� � � �� � ���� � (3)

One may view the matrix ���� as an �-dimensional sub-
space of �� that is spanned by its � columns. To com-
pare two models �� and ��, the basic idea is then to com-
pare “angles” between the two observability subspaces of
�� and ��. A canonical notion of angle between two
subspaces is given by the so-called subspace angles, also
known as principal angles. There are many (algebraically
or geometrically) equivalent ways to define subspaces an-
gles (see [22, 13, 26]). Here we only introduce one which
is conceptually simple: given a matrix � with its columns
spanning an �-dimensional subspace, let 		 denote the
orthonormal matrix which spans the same subspace as �
(which can be found through the Gram-Schmidt orthogo-
nalization). Given two matrices ��� ��, we denote the �
ordered singular values of the matrix 	�

	�
		�

� �
��� to

be ��������� � � � � ���
�����. Then the principle angles be-

tween subspaces spanned by �� and �� are denoted by the
�-tuple:

�� �� � ���� ��� � � � � ���� �
 � �
�� � �� (4)

Based on these angles, two distances can be defined:

��� � � ��
�



������
�� �� � ��� (5)

The first distance ��� follows the definition of Martin [18]
and the second is according to Weinstein [26]. In the case
of the Martin distance ��� , for minimum phase single-input
single-output (SISO) systems, it is equivalent to the norm
deduced from a natural metric on the cepstrum of the sys-
tem auto-correlation function [18], and as shown in [8] this
distance has a closed-form formula in terms of the systems’
poles and zeros. However, for MIMO systems, it is not even
guaranteed that the quantity ��� be non-negative. The dis-
tance �� , taking the largest principal angle, is always non-
negative and geometrically it is the Finsler distance between
the two subspaces viewed as two elements in the Grassman
manifold ���� �� [26]. Roughly speaking, the difference
between these two distances is that ��� is an ��-norm but
�� is an ��-norm between linear systems.

3. Recognizing gaits

As we have articulated in the previous section, a gait is
represented by a linear dynamical system and described by
the matrices ��� that live in the space ����� 	 � �����.
This space has a non-trivial curvature structure that must be
taken into account when doing comparisons between mod-
els.

One issue that we have not elaborated on is the choice of
the model order �. This is performed empirically accord-
ing to the measured value of the canonical correlations, as
discussed in the experimental section 4.

From a pattern recognition viewpoint, constructing a
probability density is not necessary to solve problems such
as “clustering” or “grouping”. For instance the �-nearest
neighbor algorithm only requires a distance to be imple-
mented, and it is therefore easily extended to Stiefel man-
ifolds under the notion of distance that we have defined.
Suppose a set of samples ��� ��� � � � is given, where each
sample is labeled as belonging to one of � classes � . Given
a new sample �, the label �� is chosen by taking a vote
among the � nearest samples. That is, �� is selected if the
majority of the � nearest neighbors have label ��, which
happens with probability

��

��������

�
�

�

�
� ���
��
��� � ���
�����
� (6)

It can be shown [9] that if � is odd the large-sample �-class
error rate is bounded above by the smallest concave function
of � � – the optimal error rate – greater than

��������
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�
�

�
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����� � ���
 � � �
��
��� � ��
��

	
�

(7)
Note that the analysis holds for � fixed as ���, and that
the rule approaches the minimum error rate for � ��. For
small samples, there are no known results except negative
counter-examples that show that an arbitrarily bad error rate
can be achieved.

4. Experiments

In this section we describe preliminary experiments in
recognizing different types of gait. We have collected sev-
eral sequences of humans walking, running, dancing, jump-
ing etc., 10 per each gait. On each sequence, we have then
defined a reduced kinematic model (half of the skeleton
along a sagittal section, since the other half follows by sym-
metry), and considered the time trajectory of the projection
of 4 joints onto the image plane: shoulder, elbow, hip and
knee. For each gait, we have changed the viewing position,
distance and subject.



For each sequence of joint trajectories we have identified
a dynamical model of orders � � � to �. For identifying the
model we used the implementation of the N4SID algorithm
[21] in the Matlab System Identification Toolbox. Since our
models are zero-mean, we subtract the mean from the data
before the learning step.

We have then computed the mutual distance between
each model in a number of ways. First we have computed
the “naive” distance (the 2-norm of the difference between
corresponding system matrices, without taking the geome-
try of the subspace into account) and the geodesic distance
between models. Not surprisingly, these led to quite disap-
pointing results. Then we have computed two distances be-
tween observability subspaces - indeed taking into account
the geometry of the subspace: the Finsler distance [26] and
a generalization of the Martin distance, defined in [18] for
SISO models. We computed the principal angles between
observability subspaces using an algorithm similar to the
one proposed in [8], extended to MIMO systems under the
assumption of full-rank innovation models. Then we have
calculated the Finsler distance �� and the Martin distance
��� as defined in ���. These two distances gave similar
results, with an advantage for the latter one. The Matlab
code for computing the subspace angles is reported in Fig-
ure 4. To the distance between learned zero-mean models
we added the norm of the difference between the the means
of the joint configurations, weighted by a scale factor whose
value was set empirically.

For the purpose of illustration, we show the results of the
most challenging experiment with our current dataset, cor-
responding to three classes of motions that result in similar
gaits: walking, running and going up and down a staircase.
Notice that these three gaits are quite similar to each other
(as opposed, say, to dancing or jumping), and yet the algo-
rithm proposed is capable of distinguishing between them
with high probability. In Figure 1 we show sample frames
from the training datasets. Figure 2 shows the pairwise dis-
tance between each model in the dataset. As it can be seen,
similar gaits result in smaller distances, with a few outliers.
Although this is a very restricted database, it suffices to test
our hypothesis.

We have now chosen a few sample sequences for each
category as a test sequence. For each of the sequences we
have estimated a model by first pre-processing the sequence
(after manual initialization) using the ideas described in [6]
to extract joint coordinates, and finally compared the mod-
els using a nearest neighbor criterion. A sample frame from
the test sequence is shown in Figure 3, while the first two
corresponding nearest neighbors are shown to the right. Al-
though this dataset is quite small, the discriminating power
of the model as a representation of the dynamic sequence
is visible. Acquiring an extensive dataset of gaits under a
variety of viewing conditions is part of our future research

Figure 1. Sample frames from the dataset: waking,
running and walking a staircase.

agenda.

Walk Run Stair

Walk

Run

Stair

Figure 2. The pairwise distance between each se-
quence in the dataset is displayed in this plot. Each
row/column of a matrix represents a sequence, and se-
quences corresponding to similar gaits are grouped in
block rows/columns. Dark indicates a small distance,
light a large distance. The minimum distance is of
course along the diagonal; for each row the next clos-
est sequence is indicated by a circle, while the second
nearest is indicated by a cross.



function theta = subspace_angles(A1,K1,C1,A2,K2,C2)

n = size(A1,1);
m = size(C1,1);
A = [ A1 zeros(n,3*n); zeros(n) A2-K2*C2 zeros(n,2*n);

zeros(n,2*n) A2 zeros(n); zeros(n,3*n) A1-K1*C1];
C = [ C1 -C2 C2 -C1 ];
Q = dlyap(A’,C’*C);
E = eig([zeros(2*n) pinv(Q(1:2*n,1:2*n))*Q(1:2*n,2*n+1:4*n);

pinv(Q(2*n+1:4*n,2*n+1:4*n))*Q(2*n+1:4*n,1:2*n)
zeros(2*n)]);

E = max(-ones(size(E)),E);
E = min(ones(size(E)),E);
theta = acos(E(1:2*n));

Figure 4. Matlab code for computing subspace an-
gles between innovation models (dlyap is a function
of the System Identification Toolbox)
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Walk1-1 Walk2-1 Walk1-2 Run1-1 Run3-1 Run1-2

Walk1-2 Walk2-2 Walk1-1 Run2-1 Run3-2 Run3-1

Walk2-2 Walk2-1 Walk1-2 Run3-1 Run3-2 Run2-1

Walk3-3 Walk3-1 Walk3-4 Run4-2 Run6-1 Stair3-1

Walk4-1 Walk4-2 Walk2-1 Run5-1 Run4-1 Stair3-2

Walk4-2 Walk4-1 Walk1-2 Run6-1 Run4-2 Run4-1

Stair1-1 Stair2-3 Stair1-2 Stair2-2 Stair2-3 Stair1-1

Stair1-3 Stair3-1 Stair1-4 Stair3-2 Stair3-3 Run5-1

Stair1-4 Stair1-3 Stair1-2 Stair3-3 Stair3-2 Walk4-2

Figure 3. For each gait we have chosen a few sample sequences (left) and computed the distance to every other
sequence in the dataset. The closest sequence is shown in the central column, while the second nearest is shown in the
right column. With a few exceptions, the nearest neighbor belongs to the same gait as the test sequence. Notice that all
gaits are quite similar; similar experiments performed on much more diverse gaits such as jumping or dancing return
correct classifications. More extensive experimental evaluations are forthcoming.


